Высокая турбулентность. Что такое турбулентность и как она возникает? Как турбулентность влияет на пассажиров

Многие люди не любят пользоваться таким транспортным средством, как самолет. У каждого на этот счет свое мнение, но объединяет их обычно одно. Что? Конечно же, страх. Он может возникнуть по самым разным причинам. Некоторые люди боятся разбиться, другие ненавидят попадать в зоны турбулентности. Кроме того, многие и вовсе считают такой способ передвижения слишком дорогим.

Что такое турбулентность?

И все же есть люди, которые обожают летать. Когда же они попадают в зоны турбулентности, как правило, возникает вопрос о том, вредно ли это. Наслаждаться полетом, чувствовать адреналин при взлете или же посадке - это одно, но когда тело трясет (и не всегда легонько и безопасно), возникают различные доводы и предположения. Итак, что же такое турбулентность и как она сказывается на здоровье человека?

Часто в народе турбулентность называют «болтанкой». Простыми словами, это разного рода колебания самолета, которые возникают в результате вихревых потоков ветра, нисходящих и восходящих. Помимо этого, маленькая зона турбулентности может возникнуть из-за некоторых Как правило, самолет выдерживает такие нагрузки, и пассажиры могут почувствовать лишь небольшое покачивание.

В чем опасность турбулентности?

Каждый пилот заботится о своем самолете и пассажирах. Поэтому он пытается избежать малейшей опасности. Так, пилот избегает зоны облаков. Но бывают случаи, когда самолет попадает в такие потоки воздуха, которые способны бросить его на закритические углы атаки. Как следствие, всё транспортное средство может оказаться под угрозой. Именно поэтому пилот никогда сознательно не полетит в грозовые облака. Такие объекты хорошо видны на локаторе и предупреждают о возможных препятствиях.

Таким образом, зона турбулентности - это не поддающееся прогнозам явление. Оно вызвано скоплением и порой может не отображаться на локаторе пилота. Как следствие, от этого никто не застрахован.

Безопасность прежде всего!

Нельзя точно сказать, опасна ли турбулентность. Все зависит от потоков воздуха. Стоит отметить, что перед началом рейса каждый пилот проходит специальную подготовку. В ходе нее он ознакамливается с погодой и выбирает оптимальный маршрут.

Но также бывают ситуации, когда спланировать или спрогнозировать маршрут невозможно. Когда летишь на самолете больше восьми часов, предугадать изменение погоды просто нереально. Тогда стоит полагаться только на отличные навыки и внимательность пилота. Помимо этого, защитить самолет от неприятностей может специальное оборудование, которое смягчит болтанку.

Другие причины турбулентности

Отметим, что одной из возможных причин образования зоны турбулентности могут стать струйные течения. Их суть заключается в том, что они могут изменяться очень быстро и в разные стороны, то есть в горизонтальном или вертикальном направлениях. Особенностью таких течений является то, что они могут тянуться на несколько сотен тысяч километров. Чаще всего их можно встретить у востока США.

Благодаря плотному трафику в небе самолет может избежать той или иной зоны турбулентности. В иных случаях явление может негативно повлиять на человека и средство передвижения в целом. Очень важно, чтобы попутные самолеты выдерживали определенное расстояние между собой. Во-первых, это необходимо для того, чтобы они не столкнулись, а во-вторых, это помогает уменьшить риск попадания в зону турбулентности.

Многие люди считают, что болтанка возникает в результате ошибки пилота или его непрофессионализма. Это совершенно ошибочное предположение! Самолет очень часто движется на автопилоте, и главная задача командующего - это наблюдать за локаторами в кабинке и за другими приборами. Данная функция отключается в случае сильной тряски, которая возникает при попадании в зону турбулентности. Тогда пилот руководит самолетом вручную. И как сильно будет трясти воздушное судно, зависит только от него самого. Чем больше масса воздушного судна, тем ощутимей будут толчки.

Помимо вышеперечисленных причин, встречается еще и другая. Например, снижаясь, самолет может столкнуться с сильным вихрем, порывом ветра. Но и об этом не стоит слишком беспокоиться, так как в наше время разработаны специальные нормативы и параметры полета в период болтанки, которые позволяют избежать неприятностей. Если они не помогают, тогда в обязанности пилота входит посадить самолет в ближайшем аварийном аэродроме.

Какие бы зоны турбулентности ни встретились на пути у пассажиров, никогда не стоит преждевременно паниковать. Да, не будем отрицать, что такое явление не стоит недооценивать. В лучшем случае перед полетом каждому человеку необходимо немножко подготовиться, прислушавшись к рекомендациям профессионалов и прочитав необходимую литературу.

Но один вопрос все же интересует всех пассажиров: «В чем опасность турбулентности?» Поспешим успокоить всех людей, которые страдают аэрофобией: болтанка может немного напугать, но за 120 лет истории авиации не произошло ни одной катастрофы, причиной которой была бы или могла бы быть турбулентность. Все потому, что пилоты прекрасно знают, как реагировать и вести себя в таких ситуациях. А также сегодня существует масса параметров, нормативов, техник, которые помогают избежать неблагоприятной ситуации.

Турбулентность: опасность или страх?

Причин феноменального явления очень много: завихрение от торцов крыльев, неравномерное прогревание воздуха, встреча воздушных масс, температура которых различается, и многое другое. Но это лишь незначительные факторы, которые могут привести к болтанке. Так или иначе, избежать ее намного легче, чем попасть в эпицентр событий. Будьте уверены, ни один пилот не направит свой самолет в опасное место! Небольшая тряска не должна восприниматься как тревожный знак и угроза для безопасного полета. Вред турбулентности - всего лишь миф, который в условиях развития передовых технологий не может навредить человеку.

Очень многие пассажиры пугаются, когда самолёт в воздухе начинает трясти, то есть когда по тем или иным причинам появляется «болтанка» или турбулентность, если по-научному.

Турбулентность — это естественное явление в авиации, точно также, как качка в море, как тряска автомобиля на неровной или ухабистой дороге.

Если в море вы можете видеть волны, на дорогах — заплатки или ямы, то в небе часто этого ничего не видно, но на самом деле оно тоже совсем не однородно.

Что происходит в небе?

В воздухе постоянно происходит много различных процессов — движутся разные воздушные потоки и струйные течения, скорость которых иногда может достигать до 300 км/час, а то и больше. Образуются зоны разного атмосферного давления. Одни воздушные массы сменяются другими, возникают метеорологические фронты — от холодного, тёплого до смешанного.

Каждый день в атмосфере изменяется температура и давление. Обычно с ростом высоты и то, и другое должно уменьшаться, но бывает и наоборот. Сила и направление ветра тоже постоянно варьируются. Иногда можно видеть, как облака на разных высотах движутся в противоположные стороны.

Всё это в целом делает атмосферу либо стабильной, либо нестабильной, создавая условия для появления разных погодных явлений, в том числе и турбулентности.

Фото: ©Алина Архипова / Вот так мы видим на метеорадаре, где можно лететь, а где опасные зоны. Принцип, как у светофора: зелёный цвет — нормально, можно лететь; жёлтый цвет — осторожно, всякое может быть, и турбулентность в том числе; красный цвет — не лезь, опасно! Есть ещё один цвет: magenta — сиренево-фиолетовый — это очень опасно! Но видела я его очень редко.

Иногда пилоты заведомо могут знать о возможной турбулентности на своём маршруте из метеорологических карт и сводок погоды, которые они проверяют перед каждым полётом. А если в полёте появилась турбулентность там, где в картах она не была отмечена, то пилоты сообщают об этом диспетчеру, и он в свою очередь предупреждает потом другие борты, входящие в данный сектор.

Причины «болтанки»

1) Красивые пушистые облака, кучевые (cumulus) и особенно кучевые-дождевые (cumulunimbus CB) являются турбулентными за счёт восходящих и нисходящих потоков, образующихся в них. Во время гроз воздух переполнен грозовыми облаками CB.

Но не все облака турбулентны. В отличие от пушистых красивых облаков, внутри и рядом с которыми может «болтать», низкие слоистые сплошные облака обычно спокойные.

Фото: ©Алина Архипова / На заднем плане турбулентные облака, которые пилоты всегда обходят стороной. В этих облаках присутствуют восходящие и нисходящие потоки, поэтому там будет сильная турбулентность.

2) Но тряска не всегда рождается из-за одних только облаков. Есть ещё турбулентность ясного неба (clear air turbulence — CAT), когда в воздухе нет ни единого облачка, солнечно и красиво, а атмосфера нестабильная, и самолёт неожиданно начинает трясти.

3) Также турбулентность часто возникает в горной местности, и чем ближе к горам, тем сильнее.

4) Ещё есть термические потоки (восходящие потоки) в тёплое время года, образующиеся от нагрева поверхности земли. Поэтому тёплой весной и летом даже при хорошей ясной погоде самолёт на посадке может прилично «болтать» именно из-за них, особенно при пролёте разной поверхности (так как она по-разному прогревается). Например, когда лесистая местность сменяется полем или долиной, или при пролёте береговой линии с моря на сушу.

5) Есть искусственная турбулентность – это если самолёт попадёт случайно в спутную струю впереди летящего или взлетающего самолёта. Это достаточно опасно. Именно поэтому диспетчеры должны обеспечить, а лётчики соблюдать определённую дистанцию — интервал между бортами самолётов как при взлётах/посадках, так и на других этапах полёта.

Хотя случайности всё равно иногда бывают, например, по причине ветра, когда тот задерживает спутную струю пролетающего самолёта или сносит её прямо на идущий самолёт следом. В таких случаях самолёт может сильно мотнуть из стороны в сторону вплоть до самопроизвольного отключения автоматики, и среагировать надо очень быстро.

У меня было так несколько раз, ощущения не из приятных. Но чтобы пилоты были подготовлены к таким неожиданностям и знали, как действовать, подобные ситуации прорабатываются обязательно на тренажёрах.

Фото: ©Алина Архипова

6) А ещё, например, наш Boeing может трясти, когда мы летим с выпущенными спойлерами (интерцепторами), если срочно надо снизиться или быстро погасить скорость. Спойлеры — это пластины на верхней поверхности крыла, поднимающиеся вертикально вверх при выпуске.

То есть в полёте очень много естественных причин тряски самолёта.

Насколько опасна турбулентность?

В авиации турбулентность делят по интенсивности на три категории:

  • Слабая — может доставлять немного дискомфорта от того, что всё время потряхивает, но она абсолютно не нарушает обычное течение полёта.
  • Средняя — более дискомфортная — не даёт спокойно поесть, стакан может слегка уехать или даже расплескаться. К тому же ходить по салону становится трудно: можно обо что-нибудь удариться, набить себе шишку или даже получить вывих. Точно также, как в автобусе при резких торможения или поворотах. Чтобы случайно никто не пострадал, капитан включает сигнал «Пристегнуть ремни». При средней турбулентности мы также попросим сесть на места и бортпроводников.
  • Сильная – единственная категория турбулентности, которую можно считать опасной, так как есть вероятность временной потери управления.

Но сразу скажу, что мы делаем всё, чтобы самолёт никогда не оказывался в зоне с сильной турбулентностью. Просто так сильная турбулентность сама по себе не бывает. В большинстве случаев она появляется в зоне действия гроз и большого скопления грозовых облаков. А это возможно предвидеть, изучив метеокарты и отследив по радару. Пилоты всегда обходят подобные зоны, если возможно. А если невозможно, то уходят на запасные аэродромы. Причём есть ограничения, на каком удалении безопасно обходить опасные сектора, как сбоку, так и по высоте.

Если по каким-то причинам всё же самолёт случайно попал в зону с сильной турбулентностью, то пилоты должны немедленно выйти оттуда, даже если понадобится для этого развернуться на 180 градусов (другими словами — повернуть назад).

То, с чем вы сталкиваетесь иногда в полёте — это обычно слабая или средняя турбулентность, и лишь в редких случаях может оказаться сильная. Самолёт же рассчитан на то, чтобы выдержать даже турбулентность сильной интенсивности.

Когда вы едете по брусчатой мостовой, чтобы вас так не трясло, вы можете сбавить скорость. На самолёте сильно скорость не убавить, ведь это одна из главных составляющих подъёмной силы самолёта. И даже уменьшение скорости в воздухе сильно не спасёт от «болтанки», так как всё же процессы в воздухе более сложны, чем разбитый асфальт на дороге.

«Болтанка» в воздухе будет ощущаться меньше на более тяжёлых самолётах, а вот маленькие и лёгкие трясёт сильнее. Скажем, на Boeing трясет меньше по сравнению с Bombardier Q400.

В любом случае турбулентность — это естественное и неотъемлемое явление в авиации. Разве что избежать полностью дискомфорта от неё для пассажиров не всегда возможно.

Именно поэтому, летая пассажиром и находясь на своих местах, всегда пристёгивайтесь ремнями безопасности. Лишний раз по салону лучше не разгуливать, а только при необходимости.

И, кстати, пилоты пристёгнуты всегда в течение всего полёта.

На сегодняшний день турбулентность является весьма актуальной проблемой для воздушных судов, при этом, человек, к сожалению никак не может контролировать вихревые хаотичные потоки ветра. Как правило, турбулентность представляет серьёзную опасность для самолётов, однако, в большей мере каких-либо негативных последствий для воздушных судов удаётся избегать, но, зачастую при этом страдают пассажиры, получающие ряд травм и ранений из-за сильной тряски самолётов.

Турбулентность после.

Снизить угрозу для жизни и здоровья пассажиров всё же можно, применив на практике весьма интересную идею, основанную на ряде законов гидродинамики. Идея весьма проста и заключается в том, что пассажирские кресла, имеющиеся в салоне воздушного судна должны быть обеспечены гидравлическими демпферами, которые будут срабатывать при малейших колебания пассажирского авиалайнера, тем самым снижая инерцию, и избавляя сотни пассажиров от травм и возможных ранений.

Принципиальная схемы работы демпфирующего пассажирского авиакресла

Как известно, жидкость является несжимаемой средой, и использование гидродемпфера встроенного в пассажирского кресло, позволит избежать тряски пассажирских кресел в случае попадания самолёта даже в зону сильной турбулентности. Хаотичные движения воздушного судна будут гаситься гидравлической средой, то есть, если самолёт резко качнётся вниз, то согласно законам физики, пассажир находящийся в кресле, должен в течении мгновений оставаться в той точке, от которой самолёт отклонился, и на оборот, при резком подъёме, пассажир начнёт вжиматься в кресло. Два рассмотренных случая являются скорее частными, однако, учитывая хаотичное движение самолёта при турбулентности, создастся сильная вибрация, в ходе которой человеком могут быть получены травмы. Использование же гидродемпфера, позволит гасить эти колебания, тем самым минимизирую любой возможный вред, создавая безопасные условия для пассажиров.

Помимо прочего, у текущей разработки имеется и ещё одно весьма интересное назначение – пассажирские кресла, оснащённые демпфирующими элементами крайне эффективны в случае вынужденной или аварийной посадки, например при отказе шасси, при приземлении самолёта на неподготовленной местности и т.д. Гипотетически, используемые кресла позволят также обезопасить пассажиров и в случае падения самолёта, однако, лишь в той ситуации, если не произойдёт последующего возгорания, взрыва и т.п.

Костюченко Юрий специально для сайт

Турбулентность атмосферы

Скорость движения воздуха и зависших в нем частичек изменяется в пространстве и во времени. Упорядоченные и турбулентные движения воздушных масс различаются, прежде всего, масштабами. Крупномасштабное движение считается упорядоченным, а мелкомасштабное - турбулентным. Провести четкую границу между ними невозможно: она является условной и зависит от задания и методов измерений.

Для турбулентного движения воздушных масс характерна неупорядоченность поля скоростей во времени и в пространстве, наличие неоднородностей или турбулентных вихрей, влияющих на поведение самолета. Создается спектр вихрей разных размеров (масштабов). Величина, обратная масштабу, называется пространственной частотой, аналогично тому, как круговая частота ш в радиотехнике является величиной, обратной периоду колебаний. Распределение турбулентной энергии по пространственным частотам, которые называют спектром турбулентности, является ее достаточно полной характеристикой. Величина е, как размерный параметр спектра турбулентности, характеризует ее интенсивность.

Природа турбулентного движения в атмосфере такова, что энергия крупномасштабных вихрей передается вихрям меньшего масштаба - вихри словно дробятся. Это продолжается до тех пор, пока вихри не станут настолько мелкими, что их кинетическая энергия целиком пойдет на преодоление вязкости воздуха и превратится в тепло. Такой процесс турбулентного движения протекает беспрерывно, пока идет энергетическое пополнение крупномасштабных вихрей от атмосферных энергетических источников, связанных с разностью температур и давлений. Преобразование кинетической энергии турбулентности в теплоту называют диссипацией кинетической энергии турбулентности (ДКЭТ). Величина е по своему физическому содержанию является скоростью, с которой превращается в теплоту кинетическая энергия турбулентности минимальных масштабов. Чем больше в, тем выше интенсивность турбулентности.

Турбулентность наблюдается не во всей атмосфере одновременно и не на всех высотах. Она возникает под влиянием термических и динамических факторов. Поэтому принято различать термическую и динамическую турбулентность.

Термическая турбулентность появляется в результате неравномерного нагревания земной поверхности и при больших вертикальных градиентах температуры. Этот вид турбулентности характерен для нижней половины тропосферы (до 3-4 км). Интенсивность ее зависит от времени года, периода суток и устойчивости атмосферы. Наибольшая интенсивность наблюдается днем в теплое время года в холодных неустойчивых воздушных массах, а также в размытом барическом поле - в седловинах и циклонах.

При термической турбулентности в атмосфере возникают как беспорядочные, так и упорядоченные восходящие и нисходящие движения воздуха, создаются кучевые и кучево-разорванные, модно-кучевые и кучево-дождевые облака.

Динамическая турбулентность создается вследствие трения движущегося воздуха о шершавый рельеф земной поверхности и неоднородности воздушных потоков по скорости и направлению.

Трение воздуха о земную поверхность на равнинной и гористой местности обусловливает возникновение динамической турбулентности преимущественно в нижнем слое тропосферы (до 1-1,5 км). В горной местности она может распространяться значительно выше (до 7-9 км).

Динамическая турбулентность возникает в слоях свободной атмосферы с большой изменчивостью характеристик ветра и наблюдается чаще там, где имеются сходимость или расхождение воздушных потоков, искривление их направления, а также на участках струйных течений. Она может возникать также в виде восходящих и нисходящих потоков в результате волновых движений на границе слоев инверсии и изотермии. Интенсивность ее зависит от скорости вертикального и горизонтального сдвигов ветра.

Хотя термическая и динамическая турбулентность создаются в результате действия разных факторов, на характер воздушных потоков они могут влиять как раздельно, так и одновременно, усиливая интенсивность турбулентного состояния атмосферы.

Турбулентность обусловливает в атмосфере перенос теплоты, водяных паров и твердых частиц по вертикали, порывистость ветра. Турбулентный обмен существенно влияет на условия образования, эволюцию и микроструктуру облаков, осадков и туманов, которые создают сложные метеорологические условия для полетов.

Интенсивная турбулентность наблюдается при ясном и облачном небе. Поскольку она является одним из облакообразующих факторов, рассмотрим ее физические характеристики при ясном небе («турбулентное поле»).

Существует несколько видов турбулентности в ясном небе:

    1) механическая турбулентность, обусловленная влиянием неровностей земной поверхности на воздушные течения и иногда усиливаемая ее неодинаковым нагреванием;

    2) горные волны, которые по происхождению являются особой формой турбулентности первого вида (из-за специфического влияния на полеты ВС горные волны рассматриваются отдельно);

    3) турбулентность струйных течений;

    4) турбулентность во внутренних для свободной атмосферы слоях.

Турбулентность в ясном небе относится к опасным для авиации метеорологическим явлениям в силу внезапности влияния на ВС. Некоторые авиационные происшествия происходили вследствие попадания самолетов при безоблачном небе в зоны опасной турбулентности.

Турбулизация воздушных потоков в ясном небе связана с существованием в атмосфере слоев со значительными вертикальными и горизонтальными градиентами скорости ветра и температуры воздуха.

В условиях стойкой температурной стратификации возникновение ТЯН можно объяснить потерей устойчивости (ростом по амплитуде и последующему разрушению) гравитационных или гравитационно-сдвижных волн (над горами - горных волн) и передачей энергии от волновых движений к турбулентным.

В тропосфере вероятность попадания ВС в ТЯН довольно высока, она зависит от географической широты. В средней и верхней тропосферах умеренных широт этот параметр составляет приблизительно 10 % общего налета самолетов, в южных широтах - 15-20 %. В стратосфере такая вероятность значительно меньше и в слое 10-20 км равна приблизительно 1 %.

Попадая в зону ТЯН, самолеты чаше всего подвергаются слабой и умеренной болтанке, интегральная повторяемость которой в тропосфере составляет 95 %, и только в 5 % случаев может наблюдаться сильная болтанка.

Турбулентность видео

Горизонтальные размеры ТЯН изменяются в довольно больших пределах, в особенности в тропосфере, достигая в отдельных случаях нескольких сотен километров. Однако для 80 % случаев в верхней тропосфере умеренных широт длина турбулентных зон не превышает 140 км. В стратосфере зоны ТЯН имеют значительно меньшие горизонтальные размеры. На высоте 10-20 км горизонтальная длина турбулентных зон (80 % случаев) в умеренных широтах территории СНГ составляет меньше 80 км, а в нижней стратосфере над США - до 40 км. Это означает, что при пересечении сверхзвуковым самолетом на крейсерском режиме зон ТЯН болтанка наблюдается на протяжении нескольких секунд или десятков секунд.

Зоны ТЯН могут быть непрерывными (сплошными) и в виде отдельных прерывчатых ячеек с довольно резкими границами. Сплошные зоны ТЯН имеют большую повторяемость.

Толщина зон ТЯН, как и горизонтальные размеры, колеблется в значительных диапазонах в зависимости от географической широты, высоты размещения и аэросиноптических условий. В средних и высоких широтах СНГ (85-90 % случаев) толщина турбулентных зон в тропосфере не превышает 1000 м, а в стратосфере - 350 м., следовательно, зоны ТЯН имеют сильно выраженную пространственную анизотропию. Это плоские образования, коэффициент пространственной анизотропии которых (отношение толщины турбулентной зоны к ее горизонтальной длине) при 80-процентной интегральной повторяемости составляет для верхней тропосферы средних широт.

Турбулентность видео 2

Тема турбулентности неотъемлемо всплывает при упоминании о различных потоках газов, жидкостей или плазмы. Большинство движений материи обладают турбулентным характером.

Так что такое турбулентность? Турбулентность - это определение неупорядоченного нелинейного движения. Понятие «турбулентность» четкого и однозначного определения не имеет. В общем случае это вихревое движение потоков, вызванное увеличением их скорости.

При расчетах летательных другого рода аппаратов турбулентным считается течение со значением гидродинамического критерия подобия Рейнольдса, выведенного из уравнения Новье-Стокса, более 2320. Рейнольдс в своих исследованиях указал факторы, влияющие на движение жидкости: турбулентным течение становится при увеличении линейной скорости и плотности потока, диаметра отверстия (трубки) и уменьшении динамической вязкости материи.

Примером турбулентного течения являются воздушные потоки, представляющие собой вихри различных размеров, возникающие при резкой перемене направления ветра: от вертикального к горизонтальному и наоборот. Атмосферная турбулентность приводит к прерывистости ветра, различным вертикальным переносам пара, ядер конденсации и других частиц, имеющих массу и форму, а также энергии в виде тепла из одного слоя атмосферы в другой.

Турбулентность в авиации

Особое значение турбулентность имеет при полете воздушных судов. Что такое турбулентность в самолете знает не каждый. При наложении вихрей друг на друга самолеты подвергаются воздействию разнонаправленных ветров, в результате чего меняется подъемная сила и углы атаки крыльев. Подобная ситуация за бортом приводит к тряске и вибрации - так называемой «болванке».

Различают умеренную и сильную болванку. При первой толчки, изменения высоты полета и покачивания воздушного судна не столь значительны, и пилоты не испытывают трудности в управлении самолетом.

Сильная болванка - более серьезная ситуация, заключающая в частых кренах и рысканьях, сопровождающаяся ухудшением управляемости и устойчивости в полете, а также искажением показаний бортовых приборов. Подобное явление при непринятии соответствующих мер может создавать напряжения в деталях и отдельных узлах, приводя значительным поломках и деформациям оборудования и воздушной болезни у членов экипажа и пассажиров.

При попадании в зоны турбулентности пассажиры нередко испытывают беспокойство, справится ли пилот со сложившейся ситуацией. Однако квалификация и навыки пилота могут пригодиться только в случае очень сильной болванки. В остальных случаях зона турбулентности не оказывает сильного влияния на полет - он совершается на автопилоте.

Что такое зоны турбулентности? Как правило, это пространство, где вероятность попадания в длительную турбулентность достигает 100%.

В настоящее время практически любой пассажир может определить, когда и где в период перелета судно будет трясти. Это стало возможным в результате создания карт турбулентности, где более светлым цветом отмечены более спокойные зоны и наоборот. Карта турбулентности онлайн создана для уменьшения беспокойства пассажиров и экипажа, позволяет предугадать и подготовиться, если самолет попал в турбулентность.

Опасна ли турбулентность для самолета? Безусловно, подобное явление вызывает беспокойство и страх, и при возможности его обходят стороной. Как правило, для самого самолета неустойчивость атмосферы неопасна, поскольку его конструкция предусматривает подобные перегрузки. Чаще всего в 30% случаев травмы получают стюардессы, не успевшие вовремя пристегнуть ремни безопасности.

Габариты воздушного судна играют не последнюю роль в ощущении тряски при турбулентности. Чем крупнее самолет, тем неудобства менее ощутимы. Каждый рано или поздно задается вопросом о том, где в самолете меньше всего трясет при турбулентности? При выборе места следует ориентироваться по интенсивности тряски в салоне: самая сильная - в хвостовой части.

Причины турбулентности

Выделяют следующие причины турбулентности:

  • термоконвекция (вследствие неравномерности прогрева поверхности или при смешении холодного и теплого воздуха при значительных вертикальных изменениях температуры);
  • вследствие трения движущихся воздушных потоков о шероховатый рельеф;
  • вследствие неоднородности характера воздушных потоков в направлении и скорости, волновых движений на инверсионных и изотермических слоях (имеются чередующиеся нисходящие и восходящие потоки).

Примером термической конвекции является образование кучевых облаков.

Перед совершением каждого рейса экипаж и сам пилот проводят ознакомление со сводками погоды на ближайшее время, чтобы выбрать наиболее безопасный маршрут движения. Особое внимание уделяется наличию кучевых облаков.

Кучевые облака - плотные атмосферные образования, чаще всего отдельно расположенные, с высотой нижней границы до 1200 м и протяженностью до нескольких сотен метров. Они образуются в результате мощных вертикальных потоков и имеют внутренние восходящие потоки до 10-15 м/с.

С точки зрения безопасности полета входить в такие облака, а также совершать полет судну под ними запрещено. Особенно опасны кучево-дождевые облака, поскольку в них ввиду наличия частиц воды, образуются сильные осадки и электрические разряды. Поэтому рекомендуется прокладывать маршрут на расстоянии 10 км от грозовых облаков на высоте выше 1 км над ними. Осложняет полет не только высокая турбулентность в самолете, вызывающая болтанку, но и плохая видимость - до 45м.

Зоны наложения восходящих и нисходящих потоков могут распространяться на тысячи километров. Больше всего случав зафиксировано Больше всего случав зафиксировано на восточных берегах США.

Турбулентность ясного неба

Отсутствие на небе каких-либо облаков не говорит о том, что турбулентности не будет. На высоте от 5000 м может возникнуть так называемая турбулентность ясного неба. Такое явление характерно для горной местности с подветриваемой стороны склона. При обтекании гор воздушны поток отклоняется от прямолинейного направления, деформируется и образует зоны повышенной турбулентности. Распределение зон меняется по высоте: в нижней и верхней частях - максимальна, а в средней минимальна.

При невозможности изменить курс полета, воздушные судна должны в строгом порядке выдерживать определенное расстояние, чтобы избежать столкновения.

Может ли самолет упасть из-за турбулентности? За все время по причине турбулентности ясного неба произошло пять крупных авиакатастроф. При условиях полного отсутствия облаков произошло разрушение самолета, совершавшего рейс из Токио в Гонконг. Специалисты установили, что виной гибели всех пассажиров рейса и экипажа стала необычно высокая турбулентность у склонов Фудзи.

Другим примером является крушение авиалайнера, совершавшего посадку в одном из аэропортов Аляски. Версию трагедии из-за турбулентности сразу не рассматривали, поскольку она противоречила прогнозам гидрометеоцентра. Однако впоследствии был зафиксирован отток арктических масс, что послужило образованию аномальной воздушной волны и зоны турбулентности.

1 мая 2017 года по всем отечественным новостным каналам прошло сообщение о попадании боинга 737, совершавшего рейс из Москвы в Тайланд, в зону турбулентности ясного неба. Установить факт приближения воздушной ямы и избежать попадания в нее судна было невозможно, поскольку ни один прибор ее не зафиксировал. В результате резкого прыжка боинга на 200 м пассажиры получили множественные травмы и переломы.

Согласно статистическим данным, за год возникает в среднем около 1000 случаев прецедентов, связанных с неустойчивостью атмосферы в ясном небе. В основном они приводят задержкам рейсов, что наносит большой материальный ущерб авиакомпаниям-перевозчикам.

Действия пилотов при попадании в зону турбулентности

По словам капитана Чесли Салленбрга, посадившего пассажирский самолет на Гудзон, при попадании в зону турбулентности в кабине пилотов принимается одно их двух решений: выйти за пределы неустойчивости, снизив высоту, или выйти в безоблачное пространство, набрав ее.

На случай, если самолет попал в турбулентность, разработан свод правил и рекомендаций для кабины пилотов и экипажа. Необходимо выполнить следующие команды:

  1. Перевести автопилот на ручное управление.
  2. Включить команду «Подтянуть ремни».
  3. Отрегулировать скорость 340 км/ч.
  4. Не допускать резкого перепада высоты, крена самолета более 10°.

В условиях невозможности избежания зоны сильной болванки командир экипажа обязан возвратить воздушное судно на исходный или ближайший аэродром.

Таким образом, явление турбулентности в небе для самолета не представляет сильной угрозы. Подобно несовершенствам на автомобильных трасах (кочки, камни), турбулентность в воздухе требует лишь излишнего внимания у командира воздушного судна.