Почему самолёты летают. Как и почему летают самолеты. Почему самолеты летают с разной скоростью

Человек всегда мечтал летать в небе. Помните историю об Икаре и его сыне? Это, конечно, всего лишь миф и как было на самом деле мы никогда не узнаем, но жажду парить в небе эта история раскрывает сполна. Первые попытки взлететь в небо были сделаны при помощи огромного который сейчас скорее средство для романтических прогулок в небе, затем появился дирижабль, а вместе с этим позже появляются самолеты и вертолеты. Сейчас уже практически ни для кого не является новостью или чем-то необычным то, что можно слетать за 3 часа самолетом на другой континент. Но как это происходит? Почему самолеты летают и не падают?

Объяснение с физической точки зрения довольно простое, но тяжелее это исполнить на практике

Многие годы проводились различные эксперименты по созданию летающей машины, было создано много прототипов. Но чтобы понять, почему самолеты летают, достаточно знать второй закон Ньютона и уметь это воспроизвести на практике. Сейчас уже люди, а точнее инженеры и ученые, стараются создать такую машину, которая бы летала на колоссальных скоростях, превышающих в несколько раз скорость звука. То есть вопрос уже состоит не в том, как летают самолеты, а как сделать так, чтобы они летали быстрее.

Две вещи для того, чтобы самолет взлетел - мощные двигатели и правильная конструкция крыльев

Двигатели создают огромную тягу, которая толкает вперед. Но этого недостаточно, ведь нужно еще и вверх подняться, а при таком раскладе выходит, что пока что мы можем только разогнаться по поверхности до огромной скорости. Следующим важным моментом является форма крыльев и самого корпуса самолета. Именно они создают поднимающую силу. Сделаны крылья так, что под ними воздух становится медленнее, чем над ними, и в итоге выходит, что воздух снизу толкает корпус вверх, а воздух над крылом неспособен сопротивляться этому воздействию при достижении самолетом определенной скорости. Это явление называется в физике подъемной силой, и, чтобы разобраться в этом подробнее, нужно иметь немного познаний в аэродинамике и в прочих сопутствующих законах. Но для понимания того, почему самолеты летают, этих знаний достаточно.

Посадка и взлет - что нужно для этого машине?

Для самолета необходима огромная взлетная полоса, а точнее - длинная взлетная полоса. Это связано с тем, что ему в первую очередь нужно набрать определенную скорость для взлета. Для того чтобы сила подъема начала действовать, необходимо разогнать самолет до такой скорости, что воздух снизу крыльев начнется подымать конструкцию вверх. Вопрос о том, почему низко летают самолеты, касается именно этой части, когда машина идет на взлет или на посадку. Низкий старт дает возможность подняться самолёту очень высоко в небо, и мы это часто видим в ясную погоду - рейсовые самолеты, оставляя за собой белый след, перемещают людей из одной точки в другую намного быстрее, чем это можно сделать при помощи наземного транспорта или морского.

Топливо для самолетов

Также интересует, почему самолеты летают на керосине. Да, в основном так и есть, но дело в том, что некоторые типы техники используют в качестве топлива привычный бензин и даже солярку.

Но в чем преимущество керосина? Таковых несколько.

Первым, наверное, можно назвать его стоимость. Он значительно дешевле, чем бензин. Второй причиной можно назвать его легкость, в сравнении с тем же бензином. Также керосин имеет свойство гореть, если можно так сказать, плавно. В машинах - легковых или грузовых - нам нужна возможность резкого включения и выключения двигателя, когда самолет рассчитан на то, чтобы его запустить и постоянно поддерживать движение турбин на заданной скорости длительное время, если говорить о пассажирских самолетах. Легкомоторная авиация, которая не предназначена для перевозок огромных грузов, а по большей части связана с военной промышленностью, с агрохозяйством и прочее (в такой машине могут разместиться только до двух человек), мала и маневренна, а потому бензин является подходящим для этой области. Его взрывное горение подходит для того типа турбин, которые установлены в легкой авиации.

Вертолет - конкурент или друг самолету?

Интересное изобретение человечества, связанное с перемещением в воздушном пространстве - вертолет. У него есть главное преимущество перед самолетом - вертикальные взлет и посадка. Он не требует огромного пространства для разгона, а почему самолеты летают только с оборудованных для этих целей мест? Правильно, необходима достаточно длинная и гладкая поверхность. Иначе исход посадки где-то в поле может стать чреватым разрушением машины, а того хуже - человеческими жертвами. А посадку вертолета можно совершить на крыше здания, которая приспособлена, на стадионе и т. п. Для самолета эта функция недоступна, хотя конструкторы уже работают над тем, чтобы объединить мощность и с вертикальным взлетом.

Самолеты, особенно вблизи, впечатляют своими г абаритами и ма ссой. Остается при этом не понятным, как такой громоздкий и тяжелый объект поднимается в небесную высь. Притом, ответить на это могут даже не все взрослые, а вопросы детей частенько способны поставить в тупик. Возникновение подъёмной силы часто объясняют разностью статических давлений воздушных потоков на верхней и нижней поверхности крыла самолёта.

Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила
Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигате

лей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх. Каждый из вас делал, наверное, бумажные самолетики и с силой запускал их. Современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч. Для того чтобы подъемная сила смогла поднять в воздух Именно если такой самолетик с силой бросить вверх, он может далеко полететь, а если пустить слегка — упадет сразу же на землю. Значит, чтобы бумажный самолетик удерживался в воздухе, он должен постоянно двигаться вперед. Большие самолеты двигаются вперед за счет мощных двигателей, вращающих пропеллер. Быстро вращающийся пропеллер выбрасывает за себя огромные массы воздуха, обеспечивая поступательное движение самолета.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально.

При создании самолета крылу уделяется огромное внимание, потому что именно от него будет зависеть безопасность выполнения полетов. Глядя в иллюминатор, пассажир замечает, что оно гнется и вот-вот сломается. Не бойтесь, оно выдерживает просто колоссальные нагрузки.
Если откажет двигатель самолета - ничего страшного, самолет долетит на втором. Если отказали оба двигателя

История знает случаи, что и в таких обстоятельствах садились на посадку. Шасси? Ничего не мешает самолету сесть на брюхо, при соблюдении определенных мер пожарной безопасности он даже не загорится. Но самолет никогда не сможет лететь без крыла.

Почему самолеты летают так высоко?

Потому что именно оно создает подъемную силу. Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Почему самолету нужно сжечь все топливо перед посадкой?

Резюмируя, можно сказать, что самолет дожигает топливо для того, чтобы нагрузка на шасси при посадке не превосходила максимальную, в противном случае шасси просто не выдержит.
При проектировании самолета (как гражданского, так и военного, кстати) и в частности его шасси всегда есть такой параметр, как максимальная посадочная масса. Совершенно очевидно, что это максимальная масса, которую выдержит шасси при посадке. Когда самолет готовят к выполнению задания в него заливают столько топлива, что бы долететь до запланированного места посадки + навигационный запас топлива. Когда все штатно, топливо не сливают. Если экипаж принял решение сажать машину, а ее масса превышает максимальную посадочную, то от топлива избавляются. Особенно часто такие ситуации происходят в случае серьезного отказа сразу после взлета. Так же следует заметить, что не все самолеты просто «дожигают» топливо, чтобы «сбросить вес», некоторые оборудованы системой аварийного слива топлива.

Многие боятся упасть вниз с высоты 10 км. Это невозможно из-за сильного давления под крыльями самолета. Он держится на воздухе не хуже, чем машина на шоссе. Его можно поставить на хвост, повернуть вокруг своей оси на 100 градусов, направить вниз — и если отпустить штурвал, то самолет просто будет покачиваться в воздухе, как лодка на волнах.

Самолет – это летательный аппарат, имеющий массу больше массы воздуха, и подъемную силу, созданную по аэродинамическому принципу (отбрасывание вниз части воздуха за счет обтекания крыла). Подъемная сила - это и есть ответ на вопрос о том, почему самолеты летают. Ее создают несущие поверхности (в основном, крылья) при движении навстречу воздушному потоку самолета, развивающего скорость при помощи силовой установки или турбины. За счет силовой установки, создающей силу тяги, самолет способен преодолевать сопротивление воздуха.

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году. Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Для того чтобы подъемная сила смогла поднять в воздух современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч.

Почему самолеты летают с разной скоростью?

От требуемой скорости самолета зависит и его размер. Площадь крыльев медленных транспортных самолетов должна быть достаточно большой, так как подъемная сила крыла и скорость, развиваемая самолетом, прямо пропорциональны. Большая площадь крыльев у медленных самолетов обусловлена тем, что при достаточно малых скоростях подъемная сила невелика.

Скоростные самолеты, как правило, имеют гораздо меньшие по размерам крылья, обладающие при этом достаточной подъемной силой. Чем меньше плотность воздуха, тем меньшей становится подъемная сила крыла, поэтому на большой высоте скорость самолета должна быть выше, чем при полете на малой высоте.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Мы расскажем Вам, почему важно пройти обучение на пилота , знать что такое пилотирование самолета и как летает самолет .

Для курсанта, начинающего обучение на пилота самолета, это может стать не самым приятным сюрпризом. Давно пора возвращаться на землю, а самолет все еще летит.

В 20-е годы прошлого века авиаконструкторы столкнулись со странным явлением. Самолеты, построенные по всем законам классической аэродинамики, вдруг оказались непригодными для использования с существующей инфраструктурой. Казалось бы, все сто раз посчитано и просчитано, но вопреки цифрам и здравому смыслу самолет не может «вписаться» в длину посадочной полосы. Позднее для борьбы с этим явлением придумали интерцепторы (они же спойлеры), а сам эффект получил название «экрана».

Ученые авторы пособий по аэродинамике предлагают сложное определение экранного эффекта. Им, ученым, так по статусу положено. Реальные же пилоты объясняют все гораздо проще:
«Экран на посадке ощущаешь пятой точкой. Когда режим двигателям убрал, скорость минимальная, а самолет «почему-то» садиться не хочет».

Со стороны это выглядит так, будто самолет возомнил себя планером, или летчик решил поиграться в парашютиста: есть у них такая дисциплина, в которой кто дальше пролетит горизонтально над землей, тот самый крутой.

Разумеется, каждый пилот самолета , узнав что такое пилотирование самолета и как летает самолет в летной школе, прекрасно знает, что в так называемой «зоне влияния земли» возможен экранный эффект (в английском языке используется гораздо более понятный термин ground effect). Но часто его ошибочно называют «воздушной подушкой». На самом деле эффект планирования на сверхмалой высоте имеет отношение к воздушной подушке только в одном случае. Если вы летаете на чем-то таком:

А вот почему это происходит в авиации, давайте разберем.

Обучение на пилота: теория прежде всего

Если бы стояла задача, объяснить экранный эффект в двух словах, это были бы слова wingtip vortices. Дословно – вихри на концах крыла. На современном этапе развития авиастроения они являются предметом главной головной боли конструкторов.

Именно концевые вихри индуцируют сопротивление, которое так и называется «индуктивное» и для борьбы с которым приходится тратить лишнее топливо. Именно они оставляют позади летящего самолета спутный след, в который может попасть другой самолет, что уже не раз становилось причиной авиакатастроф. Наконец, именно они создают экранный эффект, добавляя пилоту хлопот на приземлении.
Осталось понять, откуда они берутся.

Как летает самолет

Как обычно, все начинается с азов. Благодаря особой форме профиля набегающий поток воздуха обтекает крыло по-разному. Снизу быстрее, сверху – медленнее. Возникает разница давлений, в результате которой более плотный воздух снизу как бы «выдавливает» крыло вверх. Это самое примитивное объяснение возникновения подъемной силы.

Но крыло (к великому сожалению авиаконструкторов) не бесконечно, поэтому где-то обязательно возникает область, в которой плотный воздух снизу и разреженный сверху соприкоснутся. Несложно догадаться, что произойдет это там, где крыло кончается.

Теперь вспоминаем школьный курс физики и принцип сообщающихся сосудов. Если в одной части давление больше, а в другой меньше, молекулы газа будут вести себя так, чтобы давление уравновесилось. Иными словами, из области высокого давления воздух стремится убежать в область низкого. Как ему это сделать? Разумеется, через ту же законцовку крыла (на самом деле процесс происходит и в других частях крыла, но именно здесь он наиболее выраженный). Воздух из-под нижней плоскости крыла движется наверх, создавая на кончиках крыла направленные вверх завихрения.

Но самолет-то в это время продолжает лететь вперед! В результате каждый такой поток закручивается в спираль. Это и есть концевой вихрь (он же вихревой жгут, он же спутный вихрь или спутный след).

Иногда такие вихри можно наблюдать невооруженным глазом. Например, во время авиашоу, когда сверхзвуковые истребители выполняют фигуры высшего пилотажа, а погода достаточно влажная, за ними отчетливо видна спутная струя. Вот это оно и есть.

Бороться можно, но сложно

В принципе, концевые вихри затухают буквально через несколько минут, но за большим тяжелым самолетом могут растянуться на километры. Пилот самолета , летящего следом, рискует попасть в такую сильную турбулентность, которая чревата полной потерей управляемости.

Пока аэропорты вкладывают миллионы денег в разработку систем, которые позволят рассеивать вихревой след, авиаконструкторы уже придумали способ минимизировать его образование. Для этого на современные пассажирские авиалайнеры ставят законцовки особой формы – винглеты или шаркелетты. Они изгибаются кверху, тем самым лишая воздух возможности свободно перетекать снизу вверх.

Аэропортам это нужно, чтобы минимизировать интервал между взлетами и посадками, а авиакомпаниям – чтобы сократить издержки. Чем слабее концевой вихрь, тем меньше индуктивное сопротивление, тем ниже расход топлива.

Недавно винглетами оснастили даже ремортизированного «старичка» Ан-2. Но помимо преимуществ у винглетов есть и недостатки: экономия топлива происходит в основном в крейсерском режиме полета на большой скорости на длинные расстояния. Так что малой авиации с ее частыми взлетами-посадками и короткими маршрутами технологическая революция в ближайшей перспективе вряд ли грозит. Придется научиться летать с тем, что есть.

Летная школа: еще немного теории

Все описанное выше относилось к полету на высоте. Теперь представим, что самолет с тянущимся по обе стороны шлейфом концевых вихрей идет на посадку.
Картинки ниже даже не требуют особых пояснений.

В первом варианте (на высоте) вихревые потоки проворачиваются по такой траектории, которая создает дополнительное давление вниз. То есть подъемная сила крыла становится меньше. Но когда самолет приближается к земле (или воде), концевой вихрь разбивается о препятствие. Таким образом, подъемная сила крыла становится больше, хотя другие условия (скорость, угол атаки и т.д.) не изменились.
Но и это еще не все.

На высоте концевые вихри создают дополнительное давление на верхнюю плоскость крыла. Иными словами, возрастает вертикальная скорость, направленная вниз. Из-за этого воздух, который обтекает крыло сверху, тоже меняет свое направление. Возникает так называемый скос потока.

Около земли концевые вихри «разбиваются» о поверхность. Давление на верхнюю плоскость крыла ослабевает, соответственно скос потока становится меньше:

Пилотирование самолета: куда косит поток

Говоря про меньший скос потока, мы подразумеваем, что воздух обтекает верхнюю плоскость крыла ровнее. Направление его движения становится более пологим, ближе к горизонтали. А как известно, подъемная сила, всегда перпендикулярна набегающему потоку. Чем горизонтальнее поток, тем явственнее вектор подъемной силы направлен вверх – в противовес силе тяжести.

На высоте скос потока выражен сильнее, поэтому вектор подъемной силы отклоняется назад. Но самолету надо лететь вперед! Решить это противоречие можно увеличив тягу двигателей, заплатив взамен повышенным сопротивлением. Проще говоря, чем ровнее (горизонтальнее) набегающий поток, тем меньше он сопротивляется разрезающему его крылу. Чтобы представить себе, как это все работает, можно внимательно рассмотреть рисунок выше, а можно просто запомнить:

Чем меньше скос потока -> тем меньше сопротивления -> тем больше подъемной силы.

А чем больше подъемная сила и меньше сопротивления, тем дальше самолет планирует, не желая опускаться на бренную землю.

Ни высоко, ни низко, ни далеко, ни близко

Аэродинамика – наука точная, и абстрактные понятия здесь не совсем уместны. Действительно, что значит «экранный эффект проявляется недалеко от земли»? Насколько недалеко?

Очевидно, что если первоисточником экрана являются концевые вихри, то все зависит от габаритов самолета. Чем он больше и тяжелее, тем больше в диаметре срывающиеся с его законцовок вихри. Поэтому большой самолет почувствует эффект влияния земли на большей высоте.

Но тогда почему самый популярный самолет чтобы пройти обучение на пилота - Cessna 172 и, скажем, Piper Warrior, которые находятся примерно в одной весовой категории, планируют по-разному? При одинаковой скорости и погодных условиях, Цесна приземлится заметно ближе.

Ответ – в расположении крыльев. Пайпер – так называемый низкоплан. Его крылья расположены в нижней части фюзеляжа. То есть они гораздо ближе к земле. А раз так, то и эффект влияния земли ощущается сильнее.

Принято считать, что он возникает, когда расстояние до земли равно размаху крыла или меньше. Но сильнее всего экранный эффект проявляется на высоте, равной 20% от размаха. В этот момент крыло индуцирует всего 60% от своего обычного сопротивления. Впрочем, без примеров все равно неубедительно.

Допустим, мы собрались научиться летать самолете Цессна 172. Размах ее крыла составляет 11 метров. 20% - это примерно 2 метра. Иными словами, когда Цессна (точнее, ее крыло) окажется на высоте 2 метра с небольшим, преодолеть оставшееся до земли расстояние может быть не совсем просто.

У Пайпера практически тот же размах (10,5 м), но в отличие от Цессны, его крылья находятся на высоте буквально метр от земли. Следовательно экранный эффект летчик почувствует примерно на той же высоте (2 метра), но его крылья в этот момент будут чуть ли не в двое ниже, чем у коллеги из Цессны. Соответственно, скос потока будет меньше, а сопротивление составит всего 40% от обычного. Понятно, что не меняя скорости такой самолет пролетит гораздо дальше.

Делать-то что?

Может сложиться впечатление, что экранное влияние земли – это сплошные проблемы. Но иногда он все же бывает полезен. Во время Второй мировой войны американские бомбардировщики B-29 летали на сверхдальние расстояния с авиабазы на Марианских островах в Японию. Отказы двигателей в то время считались обычным делом, и очень часто экипажи были вынуждены возвращаться с одним двигателем. Это вызывало кучу проблем – необходимость маневрировать резко сужала возможности, увеличивала расход топлива, и пилотам часто приходилось бросать пилотирование самолета катапультироваться в бескрайние воды Тихого океана. Тогда пилоты приспособились летать на малой высоте, используя экранирующий эффект воды, чтобы разгрузить двигатели.

В малой авиации экранный эффект может пригодиться при посадках на грунтовые полосы, особенно в пору осенне-весенней распутицы. Понимая, как летает самолет и что с ним происходит, можно по примеру планеристов сознательно увеличивать дистанцию горизонтального полета, выбирая для посадки кусочек посуше.

С другой стороны, если в момент посадки вы обнаружили себя летящим там, где по всем расчетам уже должны были кататься, возможно, стоит уйти на второй круг и построить заход с учетом экранного эффекта.

Почему самолеты летают? Мечта о полете с древнейших времен сопровождала человека. Она нашла отражение в древнегреческом мифе о Дедале и Икаре, чертежи нескольких летательных аппаратов оставил после себя великий Леонардо да Винчи, о диковинных способах перемещения в воздушном пространстве фантазировал Сирано де Бержерак.

Помимо этого, в истории многих цивилизаций остались задокументированные сведения об удачных и не очень попытках отчаянных изобретателей оторваться от земли. Среди них достойны упоминания:

  • полеты на воздушных змеях и «небесных фонариках», первых прототипах аэростатов, в Китае еще до Средневековья,
  • прародитель дельтаплана, успешно прошедший испытание в Кордовском халифате в 9 веке,
  • первый парашют на основе набросков да Винчи в Европе начала 17-го века,
  • удачные полеты на планере и ракете в Османской империи в 17 веке.

Первый официально зафиксированный полет человека на летательном аппарате был совершен на воздушном конструкции братьев Монгольфье в 1783 году. Однако, построить первую рабочую модель самолета стало возможно только в начале 20-го века, после промышленной революции, серьезно ускорившей научно-технический прогресс.

Давняя мечта человечества наконец осуществилась благодаря применению двигателя внутреннего сгорания в качестве силовой установки вместо парового двигателя, архаичного и не обеспечивавшего необходимой мощности.

Почему самолеты летают?

Современные самолеты – сложные высокотехнологичные летательные аппараты с большой массой или, как принято говорить, с массой больше массы воздуха. При этом им, кажется, легко удается презреть закон всемирного тяготения и оторваться от земли. Это достигается благодаря законам аэродинамики и двум важнейшим конструктивным элементам самолета:

  • силовая установка ();
  • форма крыла.

Наличие силовой установки отличает самолет от планера, а статичность крыла – от вертолета.

Крыло самолета – поверхность со сложной, обусловленной требованиями аэродинамики форой, основное назначение которой заключается в создании подъемной аэродинамической силы, необходимой для отрыва от земли и дальнейшего полета. Подъемная сила возникает при разгоне воздушного судна за счет того, что находящееся под острым углом к встречным воздушным массам крыло создает разницу давлений.

Происходит это из-за выпуклой сверху формы крыла: проходящий над ней поток воздуха обладает меньшим давлением, чем обтекающий снизу поток. Кстати, вопреки распространенному заблуждению, крыло у самолета всего одно. Фюзеляж просто делит его на две консоли: правую и левую.

Силовая установка (двигатель) – энергетический комплекс, отвечающий за создание тяги, которая, преодолевая сопротивление воздушных масс, обеспечивает самолету поступательное движение. Другими словами, именно силовая установка при взлете разгоняет воздушное судно до скорости, при которой крыло самолета начнет создавать подъемную силу, и поддерживает необходимую тягу при движении в воздушном пространстве. Существует три группы авиадвигателей, в зависимости от способа создания тяги:

  • винтовые;
  • реактивные;
  • смешанного типа или комбинированные.

Таким образом, совместная работа крыла и силовой установки самолета позволяет ему взлетать и перемещаться в воздушном пространстве. Конечно, двух указанных конструктивных элементов воздушного судна недостаточно для безопасного полёта. Конструкция самолета объединяет в себе множество систем, служащих этой цели.

Почему самолеты летают на высоте 10000 метров?

Согласно бытующему мнению, самолеты летают на высоте примерно в 10 км. Это не совсем так, для каждого полета существует своя оптимальная высота, которая зависит от типа самолета и его характеристик, удельного веса воздушного судна и метеоусловий в текущий момент.

Зачастую ее выбор осуществляется даже не экипажем корабля, а диспетчерской службой на земле. Кроме того, нужно отметить, что в гражданском воздухоплавании используется правило «четности-нечетности»: движущиеся на запад, северо-запад и юго-запад лайнеры придерживаются четной высоты кратной тысячам метров (10 тысяч метров), а направляющиеся в другие стороны – нечетной (9 или 11 тысяч метров).

Первый самолет братьев Райт поднимался в воздух всего на 3 метра, современные самые легкие самолеты совершают полет на высоте до 2 километров, а для истребителей последнего поколения оптимальная высота – примерно 20 тысяч метров.

Однако, для большинства пассажирских лайнеров идеальная высота полета находится между 9 и 12 тысячами метров над поверхностью, то есть действительно можно говорить о 10 километрах, как средней высоте полета в гражданской авиации. Такой выбор обусловлен несколькими причинами:

  • банальная экономия – на большей высоте меньшая плотность воздуха, меньшее встречное сопротивление, а значит меньше и расход топлива;
  • на этой высоте воздушное судно меньше зависит от атмосферных явлений;
  • температура на 10 тысячах метров – около -50 градусов по Цельсию — хорошо подходит для охлаждения реактивных двигателей лайнеров;
  • большая высота обеспечивает больше времени на принятия решений экипажем, а также выполнение манёвров и планирование в случае возникновения чрезвычайной ситуации на борту;
  • на таких высотах отсутствует вероятность столкновения со стаями птиц, которое может привести к внештатной ситуации.

У каждого самолета существует крайнее значение высоты, при котором давление воздуха способно создавать подъемную силу. Выше 12 тысяч метров воздух становится слишком разреженным для пассажирского лайнера со средними характеристиками. Мощность двигателя падает, а объем расхода топлива резко увеличивается, а самолет начинает «заваливаться».

Почему самолеты не летают через полюса?

На самом деле, кроссполярные пассажирские рейсы, хоть их количество и невелико, на данный момент регулярно осуществляются. По крайней мере, воздушные трассы через Северный Полюс были открыты в 2001 году, и на данный момент их успешно используют авиаперевозчики США, Канады, Китая, Кореи, Сингапура, Таиланда и ОАЭ. Однако, есть два момента, осложняющих развитие подобных маршрутов:

  • сложности с радиолокационной поддержкой диспетчерской службой на всем протяжении маршрута;
  • недостаточное техническое оснащение и плохое аэронавигационное обслуживание в Сибирской части Евразийского континента.

Возможно, дальнейший технический прогресс и выполнение масштабных проектов по строительству аэронавигационных станций в местах прохождения маршрутов сделают полеты через Северный Полюс более распространенным явлением.

Экономический смысл в этом есть: подсчитано, что кроссполярные перелеты позволят исключить пересадки и на 25% сократить полетное время на маршрутах, соединяющих Северную Америку и Азию. Южный Полюс в свою очередь удален от основных воздушных магистралей, и рациональных причин на прохождение регулярных рейсов вблизи него нет.

Почему самолеты не летают через Индийский океан?

Действительно, если открыть любую карту полетов, можно обнаружить, что маршрут воздушных судов, следующих над водами Индийского океана, всегда выстраивается вдоль суши, даже если такой путь кажется более длинным.

После нескольких авиапроисшествий последних лет, стало набирать популярность мистическое околонаучное объяснение катастроф и исчезновений летательных аппаратов в этом географическом регионе. Причем особенности карты полетов воздушных судов сторонники этой теории приводят, как доказательство своей правоты. Конечно, истинный ответ далек от мистики.

Современные пассажирские самолеты летают в соответствии с нормами ETOPS – сводом требований к полетам двухмоторных воздушных судов над местностью без ориентиров. Эти нормы были разработаны Международной организацией гражданской авиации.

Согласно ETOPS, маршруты составляются так, чтобы воздушное судно всегда находилось в пределах установленного максимального времени полета до ближайшего аэропорта, куда можно было бы дотянуть в случае отказа одного их двигателей.

В настоящее время максимальный интервал по этим нормам составляет 180 минут, в зависимости от конструкции самолеты также сертифицируют на 60 и 120 минут предельного удаления от ближайшего аэродрома. Вот почему через безлюдные просторы Индийского Океана почти не проходят маршруты гражданской авиации.

Почему самолеты летают низко?

Если исключить очевидные набор высоты и заход на посадку, в повседневной жизни мы чаще наблюдаем на небольшой высоте самолеты военно-воздушных сил, МЧС или летательные аппараты сельскохозяйственного назначения. При этом есть причина, по которой пассажирские лайнеры могут в течении долгого времени совершать полет сравнительно низко. Она как правило связана с необходимостью незапланированной посадки.

В авиации существует такой параметр, как максимальная посадочная масса, которую выдерживает шасси при посадке. Обычно топливо в самолет заливается на прохождение расстояния по маршруту с навигационным запасом. В случае необходимости посадки самолета раньше запланированного, когда топлива на борту еще много и максимальная посадочная масса выше допустимого значения, излишки топлива «сжигают» полетом на низких высотах. Если этого не сделать, шасси просто не выдержит посадки.