Самый быстрый гиперзвуковой самолет в мире. Российский гиперзвуковой самолет. Судьба «суперсоника». Нужен ли России новый сверхзвуковой пассажирский самолет Какой самолет летит больше скорости звука

Одной из важнейших задач всех специалистов авиационно-транспортного производства является создание сверхзвуковых пассажирских самолетов. Анализ уже существующих сверхзвуковых пассажирских самолетов позволил разработать принципиально новые, экономически выгодные и удовлетворяющие экологическим нормам. Рассмотрим ряд изобретений, направленных на создание универсальных сверхзвуковых пассажирских самолетов, которые можно было бы использовать на высотах полета, находящихся за пределами современных воздушных коридоров, со сверхзвуковыми скоростями.

Сверхзвуковой самолет, разработанный Корабеф Йоханном и Прамполини Марко , имеет улучшенные характеристики самолетов «Конкорд» и «Туполев ТУ-144». В частности, снижение уровня шума, которым сопровождается преодоление звукового барьера.

Данное изобретение содержит фюзеляж (рис 1), который образован передней секцией или носом CN, средней секцией или пассажирской кабиной P и задней секцией. Фюзеляж самолета имеет постоянное сечение, которое, начиная от секции пассажирской кабины, постепенно расширяется, а в заднем направлении воздушного судна сужается.

Рисунок 1. Вид сверхскоростного воздушного судна в продольном разрезе

Внутри задней секции фюзеляжа располагаются один или несколько резервуаров с жидким кислородом R01 и резервуар с водородом в жидком или шугаобразном состоянии Rv, предназначенные для питания ракетного двигателя.

Воздушное судно имеет треугольное готическое крыло, как показано на (рис.2), корень которого берет начало на уровне, где начинается расширение передней части фюзеляжа. Треугольное крыло оборудовано двумя закрылками с каждой стороны фюзеляжа.

Рисунок 2. Вид сверхскоростного воздушного судна в перспективе

С помощью цилиндрической детали на каждом наружном конце задней кромки треугольного крыла закреплено малое крыло a1,a2. На (рис. 3) иллюстрируется данное изобретение.

Рисунок 3. Малое крыло в перспективе

Подвижное малое крыло состоит из двух элементов трапециевидной формы, которые расположены с двух сторон цилиндрической детали. Цилиндрическая деталь, ось которой параллельна оси фюзеляжа, может поворачиваться вокруг своей оси для установки малого крыла в зависимости от скорости воздушного судна. Положение малых крыльев является горизонтальным при скоростях ниже 1Мах и вертикальным при скоростях выше 1Мах. Изменение положений малого крыла необходимо для решения проблемы с совмещением центра тяжести и центра приложения тяги при любой скорости самолета.

Воздушное судно оборудовано системой двигателей (рис 1). Данная система содержит два турбореактивных двигателя TB1(TB2), два прямоточных воздушно-реактивных двигателей ST1(ST2) и ракетного двигателя Mf.

Два турбореактивных двигателя TB1(TB2) размещены в переходной зоне между пассажирской кабиной P и задней секцией фюзеляжа. Турбореактивные двигатели предназначены для этапа рулежки воздушного судна и этапа взлета. Незадолго до входа в область трансзвукового полета турбореактивные двигатели выключаются и убираются внутрь фюзеляжа. Как только начинается фаза посадки воздушного судна и скорость воздушного судна становится ниже скорости 1Мах, происходит выпуск и зажигание турбореактивных двигателей. Данное решение позволяет значительно уменьшить размер и массу турбореактивных двигателей по сравнению с турбореактивными двигателями стандартного использования.

На этапе взлета воздушное судно движется не только за счет турбореактивных двигателей TB1(TB2), но и за счет ракетного двигателя. Ракетный двигатель может представлять собой (рис.4) либо единый двигатель с плавно изменяющейся тягой, либо комбинацию главного двигателя Mp с несколькими вспомогательными двигателями Ma1,Ma2 с раздельной тягой.

Рисунок 4. Вид ракетного двигателя сзади

Ракетный двигатель, размещенный в задней части фюзеляжа, имеет возможность открывания и закрывания в фюзеляже при помощи заднего люка P воздушного судна, как показано на (рис.5).

Рисунок 5. Вид сверхскоростного воздушного судна сзади

На этапе взлета люк полностью открыт, но как только воздушное судно оказывается на большой высоте, ракетный двигатель выключают, а люк закрывают, что придает обтекаемую форму фюзеляжу. Начинается фаза полета на крейсерской скорости.

Фаза полета на крейсерской скорости происходит с включения прямоточных воздушно-реактивных двигателей ST1(ST2) и выключения ракетного двигателя Мf. Два прямоточных воздушно-реактивных двигателя размещены симметрично относительно продольной оси воздушного судна и предназначены для создания крейсерской скорости. Прямоточные воздушно-реактивные двигатели имеют неподвижную геометрию, что снижает их массу и упрощает их конструкцию. Тягу прямоточных воздушно-реактивных двигателей модулируют во время полёта с помощью изменения расхода водорода.

Воздушное судно, по данному изобретению, может перевозить около двадцати пассажиров. Высота полета самолета составляет от 30000м до 35000м и может развивать скорость от 4Мах до 4,5Мах.

Особый интерес представляет сверхзвуковой пассажирский самолет, который предлагают выполнять по аэродинамической схеме «утка» . В соответствии с заявляемым техническим решением летательный аппарат содержит фюзеляж, как показано на (рис.6), который с помощью наплыва 2 сопряжен с крылом 1. В центральной части фюзеляжа размещен пассажирский салон. В поперечном сечении носовая и центральная части фюзеляжа выполнены округлой формы. В хвостовой части фюзеляжа имеется углубление.

Рисунок 6. Общий вид летательного аппарата

Воздушное судно снабжено двигателями, размещенными в мотогондоле 3, которые с двумя воздухозаборниками 4 объединены в «пакет». Данный «пакет» устанавливается сверху за углублением хвостовой части фюзеляжа, что позволяет снизить лобовое сопротивление судна, улучшить балансировку при отказе одного двигателя.

Углубление хвостовой части фюзеляжа направлено на уменьшение неравномерности сверхзвукового потока, подаваемого в воздухозаборники. Данное техническое решение ограничено первой площадкой 6 и парой вторых площадок 7, что показано на (рис.7).

Рисунок 7. Вид на хвостовую часть фюзеляжа сверху

Первая площадка 6, выполненная плоской, образует косой срез фюзеляжа. Площадка может быть ориентирована к направлению подачи воздуха в воздухозаборник судна под острым углом, значение которого лежит в диапазоне от 2 до 10 градусов. С обшивкой фюзеляжа первая площадка соединяется под углом без плавного перехода, что обеспечивает наличие в месте стыка площадки с обшивкой острой кромки 9, что формирует вихревое течение вдоль острых кромок стыка. Вихревое сверхзвуковое течение обеспечивает удаление нарастающего пограничного слоя, образовываемого за счет перемещения потока по площадкам, с периферийных областей площадок и стекания его в стороны от фюзеляжа.

Вторые площадки 7, выполненные плоскими, размещаются между воздухозаборниками 4 и первой площадкой 6. Они расположены друг к другу под углом, который целесообразно выбрать превышающим 150 градусов. Для предотвращения возрастания аэродинамического сопротивления, величина угла между направлением подачи воздуха в воздухозаборник и ребром соединения вторых площадок 10 не должна превышать 20 градусов.

Наличие вторых площадок позволяет удалять пограничный слой из областей, близких к плоскости симметрии воздушного судна, за счет образования интенсивного вихря. Интенсивное вихревое течение образуется в зоне размещения ребра между вторыми площадками. Удаление пограничного слоя из областей, близких к плоскости симметрии воздушного судна, позволяет уменьшить толщину пограничного слоя перед входом в воздухозаборники.

Стоит отметить, что обеспечивается удаление пограничного слоя непосредственно перед срезом воздухозаборника, за счет продления вторых площадок за этот срез. На (рис 8) иллюстрируется данное решение.

Рисунок 8. Вид на одну из вторых плоских площадок в месте ее продления за срез воздухозаборника

Отличие патента Сиротина Валерия Николаевича от остальных в том, что он предлагает пассажирский сверхзвуковой самолет с обратной стреловидностью крыла, имеющий аварийно-спасательные модули (показан на рис. 9).

Воздушное судно, согласно патенту, содержит фюзеляж 1, в носовой части которого расположена кабина пилотов 11. В средней части расположены аварийно-спасательные модули 2, которые образуют внешний обвод фюзеляжа, за счет теплоизолированных стенок. Также сверхзвуковой самолет содержит левое и правое крылья 3, которые выполнены с возможностью поворота относительно оси фюзеляжа. Силовая установка изобретения включает в себя четыре подъемно-маршевых турбореактивных двигателя 9.

Рисунок 9. Вид на воздушное судно сверху перед поворотом правого и левого крыльев к удерживающим захватам фюзеляжа

Стоит заметить, что воздушное судно имеет вертикальный 6 и горизонтальный 7 стабилизаторы. Переднее горизонтальное оперение 8, с помощью специальных двигателей, установлено с возможностью поворота относительно оси по горизонтали фюзеляжа.

С возможностью поворота относительно оси по горизонтали фюзеляжа прикреплено и правое, и левое крыло 3. Чтобы на сверхзвуковой скорости положения правого и левого крыла были зафиксированы, в нижней части фюзеляжа имеются удерживающие захваты. Для поворота крыльев предусмотрены специальные двигатели. Величина поворота крыльев составляет 53 градуса относительно оси по горизонтали фюзеляжа. Данное значение обеспечивает смещение зоны, где начинается срыв потока с концов крыльев к корню.

На (рис. 10) представлено, как во время взлета двигатели механизмов 15 осуществляют поворот правого и левого крыла на угол 53 градуса в направлении от фюзеляжа, а поворот переднего горизонтального оперения на угол 85 градусов. Данная аэродинамическая схема с обратной стреловидностью позволяет самолету взлетать.

Рисунок 10. Вид сверху на схему механизмом поворота крыльев

При достижении высокой дозвуковой скорости, двигатели механизмов поворачивают крылья в направлении внутрь к оси фюзеляжа, где фиксируются удерживающими захватами. Происходит поворот и переднего горизонтального оперения. За счет данных действий самолет изменяет свою аэродинамическую схему (рис.11), которая позволяет развить сверхзвуковую скорость.

Рисунок 11. Вид на воздушное судно сверху после поворота правого и левого крыльев к удерживающим захватам фюзеляжа

Для случая аварийной ситуации на судне предусмотрены аварийно-спасательные модули (рис.12). Каждый модуль снабжен катапультными установками 21, которые приводятся в действие по команде пилотов, парашютом 22, посадочным устройством 23, автономной системой энергоснабжения.

Рисунок 12. Спуск обитаемого модуля

Авторы патента №2391254 предлагают нам сверхзвуковое судно, которое выполнено по аэродинамической схеме «бесхвостка с ГО» . Согласно патенту, как показано на (рис.13), самолет содержит фюзеляж 1, передняя часть которого включает кабину пилотов и пассажирский салон 8. Особое внимание стоит обратить на то, что носик фюзеляжа приплющенный 7. В вертикальной плоскости он выполнен с радиусом 0,1…5 мм, а в горизонтальной 300…1500 мм.

Рисунок 13. Общий вид летательного аппарата

Минимум звукового удара достигается тем, что близкая к круговой форме форма поперечного сечения имеет нарастание радиуса передней части фюзеляжа.

По данному патенту для обеспечения высокой эффективности продольного управления, создания благоприятного кабрирующего момента на сверхзвуковых скоростях нижняя хвостовая часть фюзеляжа плавно переходит в плоскую в поперечном направлении поверхность. Нижняя хвостовая часть фюзеляжа заканчивается рулем высоты.

Для обеспечения минимальных возмущений потока и волнового сопротивления авторы предлагают на корневой секции стреловидного крыла в месте сочленения крыла и фюзеляжа 14 сделать большой угол стреловидности порядка 78…84 . А профиль передней кромки 9 выполнить с радиусом закругления 5…40 мм, для увеличения объема крыла и значения максимального допустимого угла атаки.

Особое внимание стоит обратить на воздухозаборники двигателей 4, которые размещаются по бокам фюзеляжа над верхней поверхностью корневой части крыла, что обеспечивает снижение неблагоприятного влияния их на величину звукового удара. Так как перед воздухозаборниками происходит подтормаживание потока, осуществляется отвод пограничного слоя через перфорированные участки 16 (показано на (рис.14)), которые выполнены на плоскостях перед воздухозаборниками и в них самих.

Рисунок 14. Схема поджатия крыла (фюзеляжа) перед воздухозаборниками и схема перепуска пограничного слоя

Слив данного пограничного слоя происходит на верхнюю поверхность фюзеляжа и крыла, через воздуховод слива 17. Но для подвода необходимого количества воздуха на различных режимах, сверхзвуковые воздухозаборники содержат механизм управляемого перепуска воздуха 18 из канала слива пограничного слоя в канал воздуховода 19 от воздухозаборников к двигателю.

Реализованные на данное время сверхзвуковые самолеты по тем или иным причинам были сняты с использования. Представленные в данной статье изобретения направлены на создание сверхзвуковых воздушных судов, которые имеют высокие летные характеристики и экологические показатели.

Главными техническими задачами для создания таких аппаратов являются:

Снижение аэродинамического сопротивления судна;

Снижение уровня шума, которым сопровождается преодоление звукового барьера;

Уменьшение выбросов вредных веществ в атмосферу, которое достигается уменьшенным потреблением топлива за счет улучшения характеристик воздухозаборников.

Большинство запатентованных сверхзвуковых самолетов имеют высоту полета, которая превышает высоту полета обычного авиалайнера. Такое преимущество позволяет использовать летательный аппарат практически во всепогодные условия, поскольку полет осуществляется на высотах, где отсутствуют метеорологические явления, влияющие на нормальное пилотирование.

Список литературы:

  1. Бабулин А.А., Власов С.А., Субботин В.В., Титов В.Н., Тюрин С.В. Пат. №2517629 (РФ). МПК B 64 D 33/02, B 64 D 27/20, B 64 С 30/00. Летательный аппарат.
  2. Бахтин Е.Ю., Житенёв В.К., Кажан А.В., Кажан В.Г., Миронов А.К., Поляков А.В., Ремеев Н.Х. Пат. №2391254 (РФ). МПК B 64 D 33/02, B 64 D 27/16, В 64 С 3/10, В 64 С 1/38, В 64 С30. Сверхзвуковой самолет (варианты).
  3. Корабеф Йоханн, Прамполини Марко, Пат.№2547962 (РФ). МПК В 64 С 30/00, B 64 D 27/020, B 64 С 5/10, B 64 С 5/08. Сверхскоростное воздушное судно и соответствующий способ воздушного передвижения
  4. Сиротин В.Н. Пат. №2349506 (РФ). МПК B 64 С 3/40, B 64 С30. Пассажирский сверхзвуковой самолет с обратной стреловидностью крыла и с аварийно-спасательными модулями.

Сверхзвуковые самолеты - летательные аппараты, которые способны совершать полет на скорости, превышающей скорость звука (число Маха M = 1,2-5).

История

Появление в 1940-х годах реактивных истребителей поставило перед конструкторами задачу в дальнейшем увеличении их скорости. Увеличенная скорость улучшала характеристики как бомбардировщиков, так и истребителей.

Первопроходцем в сверхзвуковую эру стал американский летчик-испытатель Чак Йегер. 14.10.1947 г., управляя экспериментальным самолетом Bell X-1 с ракетной силовой установкой XLR-11, в управляемом полете он преодолел скорость звука.

Развитие

Бурное развитие сверхзвуковой авиации началось в 60-70 гг. XX века. Тогда разрешились проблемы аэродинамической эффективности, управляемости и устойчивости самолетов. Большая скорость полета позволила также увеличить практический потолок на более 20 000 м, который являлся комфортной высотой для бомбардировщиков и разведчиков.

До появления зенитно-ракетных установок и комплексов, которые могли поражать цели на больших высотах, главным принципом проведения бомбардировочных операций было удерживание самолетов-бомбардировщиков на максимальной высоте и скорости. Тогда были построены и запущены в серийное производство сверхзвуковые самолеты различного назначения – разведчики-бомбардировщики, перехватчики, истребители, перехватчики-бомбардировщики. Convair F-102 Delta Dagger стал первым сверхзвуковым самолетом-разведчиком, Convair B-58 Hustler – первым сверхзвуковым дальним бомбардировщиком.

В настоящее время проводится проектирование, разработка и выпуск новых самолетов, часть которых производится по особой технологии, снижающей их радиолокационную и визуальную заметность, – «Стелс».

Пассажирские сверхзвуковые самолеты

В истории авиации были созданы только 2 пассажирских сверхзвуковых самолета, которые осуществляли регулярные рейсы. Первый полет советского самолета Ту-144 состоялся 31.12.1968 г., время его эксплуатации – 1975-1978 гг. Англо-французский самолет «Конкорд» сделал первый полет 2.03.1969 г. и эксплуатировался на трансатлантическом направлении в 1976-2003 гг.

Использование таких самолетов позволило не только уменьшить время перелета на дальние расстояния, но и использовать незанятые воздушные линии на больших высотах (около 18 км) в то время, когда высоты 9-12 км, которые использовали лайнеры, были сильно загруженными. Также сверхзвуковые самолеты выполняли рейсы вне воздушных трасс (по спрямленным маршрутам).

Несмотря на провал нескольких проектов околозвуковых и сверхзвуковых самолетов (SSBJ, Ту-444, Ту-344, Ту-244, Lockheed L-2000, Boeing Sonic Cruiser, Boeing 2707) и снятие двух реализованных проектов с эксплуатации, продолжается разработка современных проектов гиперзвуковых авиалайнеров (например SpaceLiner, ZEHST) и десантных (военно-транспортных) самолетов быстрого реагирования. В производство запущен сверхзвуковой бизнес-джет Aerion AS2.

Теоретические вопросы

По сравнению с дозвуковым полет на сверхзвуковой скорости выполняется по другому закону, потому что при достижении самолетом скорости звука происходят изменения в схеме обтекания, как следствие, увеличивается кинетический нагрев аппарата, возрастает аэродинамическое сопротивление, наблюдается смена аэродинамического фокуса. Все это в сумме сказывается на ухудшении управляемости и устойчивости самолета. Также появилось неизвестное доселе явление волнового сопротивления.

Поэтому эффективный полет при достижении скорости звука требует не просто увеличения мощности двигателей, но и внедрения новых конструктивных решений.

Поэтому такие самолеты получили изменение в своем внешнем облике – появились острые углы и характерные прямые линии по сравнению с «гладкой» формой дозвуковых самолетов.

На сегодняшний день задача создания действительно эффективного сверхзвукового самолета не решена. Создатели обязаны находить компромисс между сохранением нормальных взлетно-посадочных характеристик и требованием увеличения скорости.

Поэтому завоевание современной авиацией новых рубежей по высоте и скорости связано не только с внедрением новых двигательных установок и компоновочных схем, но и с изменениями геометрии полетов. Эти изменения должны улучшать качества самолета при полете на больших скоростях, не ухудшая при этом их характеристики на малых скоростях, и наоборот. Конструкторы в последнее время отказываются от уменьшения площади крыльев и толщины их профилей, увеличения угла стреловидности, возвращаясь к крыльям большой относительной толщины и малой стреловидности, если удалось достигнуть требований практического потолка и скорости.

Важно, чтобы сверхзвуковой самолет обладал хорошими летными данными на малых скоростях и был устойчив к лобовому сопротивлению при больших скоростях, особенно на приземных высотах.

Классификация самолетов:


А
Б
В
Г
Д
И
К
Л
О
П
Р

Сверхзвуковая скорость – это скорость, при которой объект движется быстрее звука. Скорость при полете сверхзвукового самолета измеряется в Махах – скорость самолета в определенной точке пространства относительно скорости звука в этой же точке. Сейчас подобными скоростями передвижения удивить довольно сложно, а еще каких-то 80 лет назад об этом только мечтали.

С чего все началось

В сороковых годах ХХ века во время Второй Мировой Войны над решением этого вопроса активно работали немецкие конструкторы, надеясь с помощью подобных летательных аппаратов переломить ход войны. Как мы знаем, у них этого не получилось, война закончилась. Однако в 1945 г., ближе к ее завершению, немецкий пилот Л. Гофман, испытывая первый в мире реактивный истребитель Me-262, на высоте 7200 м смог развить скорость около 980 км/ч.

Первым, кто воплотил мечту всех летчиков о преодолении сверхзвукового барьера, стал американский пилот-испытатель Чак Йегер. В 1947 году этот пилот первым в истории сумел преодолеть скорость звука на пилотируемом аппарате. Он управлял прототипным летательным аппаратом Bell X-1 с ракетным двигателем. Кстати, захваченные во время войны немецкие ученые и их разработки, довольно сильно способствовали появлению этого аппарата, как и, собственно, всему дальнейшему развитию летных технологий.

В Советском Союзе достигли скорости звука 26 декабря 1948 г. Это был экспериментальный самолет ЛА-176, на высоте полета 9060 м, который пилотировали И.Е. Федоров и О.В. Соколовский. Примерно через месяц на данном самолете, но уже с более совершенным двигателем, была не только достигнута, но и превышена скорость звука на 7000 м. Проект ЛА-176 был весьма перспективным, но из-за трагической гибели О.В. Соколовского, управлявшего этим аппаратом, разработки были закрыты.

В дальнейшем развитие данной отрасли несколько замедлилось, так как возникло значительное количество физических сложностей, связанных с управлением летательным аппаратом на сверхзвуковых скоростях. На высоких скоростях начинает проявляться такое свойство воздуха, как сжимаемость, аэродинамическая обтекаемость становится совершенно иной. Появляется волновое сопротивление, и такое неприятное для любого летчика явление, как флаттер – самолет начинает сильно нагреваться.

Столкнувшись с этими проблемами, конструкторы начали искать кардинальное решение, способное преодолеть сложности. Таким решением оказался полный пересмотр конструкции летательных аппаратов, предназначенных для сверхзвуковых полетов. Те обтекаемые формы авиалайнеров, которые мы сейчас наблюдаем, – результат многолетних научных изысканий.

Дальнейшее развитие

На тот момент, когда только окончилась Вторая Мировая, и началась корейская и вьетнамская войны, развитие отрасли могло происходить только через военные технологии. Именно поэтому первыми серийными самолетами, способными летать быстрее скорости звука, стали Советский Миг-19 (NATO Farmer) и американский F-100 Super Sabre. Рекорд скорости был за американским самолетом – 1215 км/ч (установлен 29 октября 1953 г.), но уже в конце 1954 г. Миг-19 смогли разогнать до 1450 км/ч.

Интересный факт. Хоть СССР и Соединенные Штаты Америки не вели официальных боевых действий, но реальные многократные боестолкновения во время Корейской и Вьетнамской войн, показали неоспоримое преимущество Советской техники. К примеру, наши Миг-19 были значительно легче, обладали двигателями с лучшими динамическими характеристиками и, как следствие, с более быстрой скороподъемностью. Радиус возможного боевого применения самолета был на 200 км больше у Миг-19. Именно поэтому американцы очень хотели заполучить неповрежденный образец и даже объявили награду за выполнение такой задачи. И она была реализована.

Уже после окончания Корейской войны 1 самолет Миг-19 был угнан с авиабазы офицером ВВС Кореи Но Гым Соком. За что американцы выплатили ему положенные 100000 долларов в качестве награды, за доставку неповрежденного самолета.

Интересный факт. Первой женщиной-пилотом, достигшим скорости звука, является американка Жаклин Кохран. Она достигла скорости 1270 км/ч, пилотируя самолет F-86 Sabre.

Развитие гражданской авиации

В 60х годах прошлого века после появления опробованных во время войн технических наработок, авиация начала бурно развиваться. Нашлись решения для существующих проблем сверхзвуковых скоростей, и тогда началось создание первых сверхзвуковых пассажирских самолетов.

Первый в истории полет гражданского авиалайнера со скоростью, превышающей скорость звука, произошел 21 августа 1961 г. на самолете Douglas DC-8. На момент полета на самолете не было пассажиров, кроме пилотов, был размещен балласт для соответствия полной загрузки лайнера в данных экспериментальных условиях. Была достигнута скорость 1262 км/ч при спуске с высоты 15877 м до 12300 м.

Интересный факт. Boeing 747 SP-09 Китайских авиалиний (China Airlines) 19 февраля 1985 г., совершая перелет из тайваньского Тайпея в Лос-Анжелес, вошел в неуправляемое пике. Причиной тому послужили неисправности двигателя и последующие неквалифицированные действия персонала. Во время пикирования с высоты 12500 м до 2900 м, где экипаж и смог стабилизировать самолет, была превышена скорость звука. При этом не рассчитанный на подобные перегрузки лайнер получил серьезные повреждения хвостовой части. Однако при всем этом, серьезно пострадали всего 2 человека на борту. Самолет сел в Сан-Франциско, был отремонтирован и в дальнейшем снова осуществлял пассажирские перелеты.

Однако действительно настоящих сверхзвуковых пассажирских самолетов (СПС), способных осуществлять регулярные перелеты со скоростями выше скорости звука, было сконструировано и построено все два типа:

  • Советский авиалайнер Ту-144;
  • Англо-французский самолет Aérospatiale-BAC Concorde.

Только эти два летательных аппарата были в состоянии поддерживать крейсерскую сверхзвуковую скорость (англ. supercruise). На тот момент они превосходили даже большинство боевых самолетов, конструкция этих лайнеров была уникальна для своего времени. Существовало всего несколько типов самолетов, способных летать в режиме суперкруиза, на сегодняшний день большинство современных военных машин оснащены такими возможностями.

Авиация СССР

Советский Ту-144 был построен несколько раньше европейского аналога, поэтому можно считать его первым в мире пассажирским сверхзвуковым лайнером. Внешний вид этих самолетов, как Ту-144, так и Конкорда, и сейчас не оставит равнодушным ни одного человека. Вряд ли в истории авиастроения были более красивые машины.

У Ту-144 привлекательные характеристики, за исключением дальности практического применения: выше крейсерская и меньше посадочная скорости, более высокий потолок полета, но и история нашего лайнера значительно трагичнее.

Важно! Ту-144 не только первый летающий, но и первый разбившийся пассажирский сверхзвуковой лайнер. Катастрофа на авиасалоне в Ле-Бурже 3 июня 1973 г., в которой погибло 14 человек, стала первым шагом к завершению полетов Ту-144. Однозначные причины так и не были установлены, а итоговая версия катастрофы вызывает множество вопросов.

Вторая катастрофа под Егорьевском в Московской области 23 мая 1978 г., где в полете произошло возгорание, и при посадке погибли 2 члена экипажа, стала окончательной точкой в решении о прекращении эксплуатации этих самолетов. Несмотря на то, что после анализа было установлено, что возгорание произошло в результате наличия недоработки в топливной системе нового, тестируемого двигателя, а сам самолет показал прекрасную управляемость и надежность конструкции, когда горящий смог произвести посадку, машины сняли с рейсов и вывели из коммерческой эксплуатации.

Как вышло за рубежом

Европейский Конкорд, в свою очередь, отлетал гораздо дольше с 1976 г. по 2003 г. Однако из-за нерентабельности (самолет так и не смогли вывести на минимальную окупаемость), эксплуатацию также в итоге свернули. Во многом это произошло из-за авиакатастрофы в Париже 25 июля 2000 г.: при взлете из аэропорта Шарль Де Голль загорелся двигатель, и самолет рухнул на землю (погибло 113 человек, в том числе 4 на земле), а также террористическим атакам 11 сентября 2001 г. Несмотря на то, что это была единственная катастрофа самолета за 37 лет эксплуатации, а теракты не имели непосредственного отношения к Конкорду, общее снижение потока пассажиров уменьшило и без того отсутствующую рентабельность полетов и привело к тому, что последний рейс данный самолет совершил по маршруту Хитроу – Филтон 26 ноября 2003 г.

Интересный факт. Билет на рейс Конкорда в 70е годы стоил не меньше 1500 долларов в один конец, ближе к концу девяностых цена выросла до 4000 долларов. Билет за место на последнем рейсе этого лайнера стоил уже 10000 долларов.

Сверхзвуковая авиация на данный момент

На сегодняшний день решений, подобным Ту-144 и Конкорд, не предвидится. Но, если вы тот человек, которому неважна стоимость билетов, – есть ряд наработок в сфере бизнес перелетов и маломестных воздушных средств.

Наиболее перспективная разработка – самолет XB-1 Baby Boom американской компании Boom technology из Колорадо. Это маленький самолет, длиной около 20 м и размахом крыльев в 5,2 м. Он оборудован 3мя двигателями, разработанными в пятидесятых годах для крылатых ракет.

Вместительность планируется сделать около 45 человек, при дальности перелета 1800 км на скорости до 2х махов. На данный момент это пока разработка, но первый полет прототипа планируется произвести уже в 2018 г., а сам самолет должен пройти сертификацию к 2023му году. Создатели планируют использовать разработку как в качестве бизнес-джета для частных перевозок, так и на регулярных рейсах малой вместительности. Планируемая стоимость для перелета на данной машине будет составлять около 5000 долларов, что достаточно много, но при этом сопоставимо со стоимостью перелета в бизнес классе.

Однако если смотреть на всю отрасль гражданских авиаперевозок в целом, то с сегодняшним уровнем развития технологий, выглядит все не очень перспективно. Крупные компании больше озабочены получением выгоды и рентабельностью проектов, чем новыми разработками в области сверхзвуковых полетов. Причина в том, что за всю историю авиации не было в достаточной степени успешных реализаций задач подобного рода, сколько ни пробовали достичь целей, все они в той или иной степени провалились.

В целом те конструкторы, которые занимаются текущими проектами, – это скорее энтузиасты, с оптимизмом смотрящие в будущее, которые, конечно, рассчитывают получать прибыли, но достаточно реалистично смотрят на итоги, да и большая часть проектов пока существует только на бумаге, и аналитики достаточно скептично смотрят на возможность их реализации.

Один из немногих действительно крупных проектов – это запатентованный в прошлом году компанией Airbus сверхзвуковой самолет Concorde-2. Конструктивно он будет представлять собой летательный аппарат с тремя типами двигателей:

  • Турбовентиляторные реактивные двигатели. Будут устанавливаться в передней части самолета;
  • Гиперзвуковые воздушно-реактивные двигатели. Будут монтироваться под крыльями лайнера;
  • Ракетные двигатели. Установлены в хвостовой части фюзеляжа.

Эта конструктивная особенность предполагает работу различных двигателей на определенных этапах полета (взлет, посадка, движение на крейсерской скорости).

Учитывая одну из основных проблем гражданских авиаперевозок – шум (стандарты организации воздушного движения в большинстве стран выставляют ограничение на уровень шума, если аэропорт расположен близко к жилым зонам, это накладывает ограничения на возможность ночных полетов), компания Airbus для проекта Concorde-2 разработала специальную технологию, позволяющую производить вертикальный взлет. Это позволит практически избежать попадания ударных волн на поверхность земли, что в свою очередь, обеспечит отсутствие дискомфорта для людей внизу. Также благодаря подобной конструкции и технологии полет авиалайнера будет проходить на высоте около 30-35000 м (на данный момент гражданская авиация летает максимум на 12000 м), что будет способствовать снижению шума не только при взлете, но и на протяжении всего полета, так как с такой высоты ударные звуковые волны не смогут достичь поверхности.

Будущее сверхзвуковых полетов

Не все так печально, как может показаться на первый взгляд. Кроме гражданской авиации существует и всегда будет существовать военная отрасль. Боевые потребности государства как раньше двигали развитие авиации, так и продолжат это делать. Армии всех государств нуждаются во все более совершенных летательных аппаратах. Из года в год эта потребность только возрастает, что влечет за собой создание новых конструкторских и технологических решений.

Рано или поздно развитие выйдет на такой уровень, когда использование военных технологий, возможно, станет рентабельным и в мирных целях.

Видео

Подумать над созданием сверхзвукового пассажирского самолета. По его мнению, лайнер можно было бы построить на основе военного стратегического бомбардировщика Ту-160.

В начале 2018 года Путин уже предлагал вернуться к строительству подобных самолетов в России. Однако тогда специалисты скептически отнеслись к идее президента, посчитав проект слишком дорогим. Позже в компании «Туполев» , что новый самолет может совершить свой первый полет не ранее 2027 года. Стоимость всех работ по созданию серийного самолета в компании оценили в 105 млрд рублей.

Инфо24 поговорил с авиаэкспертами и выяснил, нужен ли все-таки России новый сверхзвуковой пассажирский самолет.

Плачевный опыт

В истории мирового самолетостроения было два сверхзвуковых пассажирских лайнера: франко-британский Concorde и советский Ту-144. Эти самолеты могли развивать скорость более 2,4 тысячи км/ч, в то время как максимальная скорость Airbus A320 - 840 км/ч. При этом стоимость полета, например, из Европы в США достигала 7 тысяч долларов. Рейсы пользовались популярностью у бизнесменов.

Ту-144 разработали в КБ Туполева в 1960-е годы. Его начали использовать в пассажирских перевозках в 1977 году, однако после нескольких аварий руководство КБ решило заморозить проект.

Сверхзвуковой пассажирский самолет ТУ-144. Фото: RIA Novosti, wikimedia.org

Примерно в это же время французская компания Aérospatiale и британская BAC разработали совместный проект под названием «Конкорд». Всего выпустили 20 сверхзвуковых самолетов, которые разделили между собой авиакомпании British Airways и Air France. За 27 лет регулярных и чартерных рейсов услугами сверхзвуковых рейсов воспользовались более 3 млн пассажиров.

5 июля 2000 года один из самолетов «Конкорд» разбился при взлете в парижском аэропорту «Шарль де Голль». Тогда погибли 113 человек. После этого полеты сверхзвуковых самолетов приостановили на полтора года. В 2003 году их совсем прекратили из-за высоких цен на топливо.

С тех пор в мире больше не используют пассажирскую сверхзвуковую авиацию.

«Не экономика, а престиж»

Управляющий директор журнала «Авиатранспортное обозрение» Максим Пядушкин рассказал Инфо24 , что производство сверхзвуковых лайнеров сталкивается не только с техническими, но и с другими препятствиями.

«Тот же «Конкорд» эксплуатировался на сверхзвуке только над Атлантическим океаном, потому что, например, в США из-за ударной волны запрещено летать над сушей на сверхзвуковых скоростях. У этих самолетов было очень ограниченное использование, и проблема до сих пор не решена. Последние «Конкорды» поставлялись практически даром, за символическую цену, там разговор шел не об экономике, а о престиже. Но и их перестали использовать вскоре после аварии в Париже», - сказал Пядушкин.


Франко-британский сверхзвуковой лайнер Concorde авиакомпании British Airways. Фото: Les Chatfield, Flickr

Зачем это государству

Главный редактор журнала «Авиатранспортное обозрение» Алексей Синицкий считает, что с помощью разработки собственного сверхзвукового самолета Россия может стимулировать развитие других отраслей.

«В производстве таких лайнеров есть большое количество вопросов, которые не решены или недорешены. Конечно, работа над этими вопросами важна, нужна и интересна для создания нового поколения высокоэкономичных двигателей, поэтому работать нужно. Но, на мой взгляд, это не магистральное и не стратегическое направление гражданской авиации. Есть гораздо более приземленные вопросы, которые, пусть и менее романтично звучат, все же тоже требуют решения. Но совсем другое дело, если рассматривать гражданскую авиацию как возможность стимулировать развитие экономики.

развитие самолетостроения влечет за собой улучшения в других отраслях. поэтому для России это стратегически важно, особенно если не замыкаться на импортозамещении, а, например, найти свои области специализации и выбрать направления, где можно было бы выступать с конкурентноспособными продуктами в общемировом масштабе.

Это касается не обязательно целого самолета, а, например, какого-то узла, который мы делали бы лучше всех в мире», - сказал Синицкий в разговоре с Инфо24 .

Хотя самолеты «Конкорд» и продали авиакомпаниям по смешной цене, эксперт не считает, что деньги были потеряны: были серьезные исследования, отрасль получила знания и технологии. К тому же, это былодин из первых опытов международной кооперации, который впоследствии привел к единой системе европейского самолетостроения.

Нерентабельно и неудобно

При этом Синицкий не отрицает того, что сделать полеты на сверхзвуковых лайнерах окупаемыми чрезвычайно сложно.

«Если руководству страны необходимо повысить транспортную доступность, то это одно дело. Но при этом мировой опыт показывает, что экономичность побеждает скорость. Та же программа «Конкорд» доказала, что во многом гораздо более востребованными оказались экономичные полеты, в то время как сверхзвуковой полет из-за генерации волны уплотнения под самолетом неэкономичен по определению. По экономике сверхзвуковых перевозок много вопросов, в том числе и по тому, насколько это будет удобно для пассажиров. Например, долететь из Владивостока в Москву будет неудобно по времени из-за смены часовых поясов - нужно будет либо вылетать в неудобное время, либо в неудобное прилетать. К тому же, если в обычном самолете у вас имеется некоторый комфорт, то в сверхзвуковом будет более тесно», - рассказал эксперт.


Иллюстрация: Инфо24

Эксперт портала Avia.ru Владимир Карнозов, однако, уверен, что рентабельными рейсы сделать возможно. Правда, для этого им «критически важно» летать не только через Атлантический, но и через Тихий океан - например, из Японии, Китая и Австралии в США и Канаду.

«Считается, что «Конкорд» был убыточным, но это не совсем так. Проект оказался убыточным из-за мощного противодействия США [по экологическим нормам], которое оказалось действенным в том числе и потому, что доходы от коммерческой эксплуатации «Конкордов» формировались в основном из продаж билетов на рейсы в аэропорты Нью-Йорка и других крупных американских мегаполисов. «Конкорд» летал с промежуточными посадками из Франции в Латинскую Америку и из Англии на Ближний Восток и далее в Юго-Восточную Азию, но эти маршруты приносили существенно меньше доходов. В результате противодействия США западноевропейская промышленность выпустила меньше самолетов, чем планировалось, а программу свернули досрочно», - сказал авиаэксперт.

Тем, кто говорит о бесплатных поставках «Конкорда» авиакомпаниям и строит на этом аргументацию о несостоятельности лайнеров, Карнозов предлагает сравнить стоимость первых самолетов и цены за дозвуковые авиалайнеры той эпохи. По его словам, это огромные деньги, которые авиакомпании планировали вернуть за счет многолетней эксплуатации на рейсы из Европы в США, где машина работала рентабельно.


Сверхзвуковой самолет Concorde. Фото: nara.getarchive.net

«Если открыть зарубежные авиационные издания, то последние 7-10 лет эту тему (создания сверхзвуковых пассажирских самолетов - прим. Инфо24 ) постоянно обсуждают, главным образом применительно к самолетам деловой авиации. Но проблемы при разработке таких воздушных судов не связаны с техникой. Просто под влиянием США авиационные власти стран западного мира выдвигают завышенные требования к экологическим параметрам «суперсоников» (сверхзвуковой самолет, от англ. supersonic - сверхзвуковой - прим. Инфо24 ), в частности – уровню шума на местности и величине звукового удара. Воздействовать на Штаты возможностей нет, а с их подачи выдвигаются сертификационные требования к следующему поколению «суперсоников». Если на политическом уроне не будет найдено решение, то ничего из затеи создать сверхзвуковой пассажирский самолет не получится. А если требования смягчат, то получается очень интересный проект», - рассказал Карнозов.

Он добавил, что расходы на создание подобного самолета сильно зависят от того, под какие требования его будут создавать. По словам эксперта, если требования будут «разумными», то цена проекта составит несколько миллиардов долларов, однако если создание сверхзвукового лайнера будут «подгонять» под требования США, то «бюджет в десятки, а то сотни миллиардов долларов окажется недостаточным».

Кто сможет летать на таких самолетах

Перелеты на сверхзвуковых лайнерах чрезвычайно дорогие - например, путь из Лондона в Нью-Йорк может стоить 7 тысяч долларов. Все эксперты сходятся во мнении, что если подобные рейсы и будут востребованы, то только у бизнесменов.

«Если мы говорим о сегменте бизнес-перевозок, то спрос на скорость здесь может быть. Но расход топлива в таких самолетах будет очень большим, из-за чего даже для обеспеченных людей стоимость может оказаться достаточно высокой», - рассказал Инфо24 ведущий научный сотрудник Института транспорта и транспортной политики НИУ ВШЭ Федор Борисов.


Иллюстрация: Инфо24

С ним согласен и Владимир Карнозов. По словам эксперта, сверхзвуковые самолеты нужны для «верхнего сегмента, тех, кто сегодня летает бизнес-классом и первым классом».

Попытки создать новый «суперсоник»

Максим Пядушкин рассказал, что есть люди и компании, которые пытаются выйти на рынок сверхзвуковых самолетов, однако они делают упор на бизнес-авиацию, и их самолеты будет покупать очень ограниченный круг людей.


Иллюстрация: Инфо24

«Такие проекты начинались как стартапы, собирались энтузиасты, которые делали чертежи. Но ни один стартап не может создать самолет в одиночку. Например, компания Aerion, которую поддержали Boeing и другие крупные производители. Этот проект продвинулся , наверное, дальше всех. Это дает надежду на то, что раз в это поверили крупные производители, то самолет смогут довести до испытаний, прототипа и, собственно, полета», - сказал авиаэксперт.

На протяжении всей истории человека тянет к преодолению всех возможных барьеров. Одним из них долгое время была скорость звука. На данный момент существует немало сверхзвуковых самолётов, одни из которых активно используются различными государствами, а другие по тем или иным причинам больше не поднимаются в небо.

В ходе разработок, которые велись в течение многих десятилетий, были спроектированы не только сверхзвуковые истребители военного назначения, но и гражданские лайнеры, некоторые время перевозившие пассажиров.

Разработки самолётов, способных превысить её, начались ещё в середине прошлого века. Это происходило в период второй мировой войны, когда немецкие учёные усердно трудились, стараясь разработать сверхзвуковой самолёт, способный переломить ход войны.

Однако война закончилась, и многие немецкие учёные, трудившиеся над этими разработками, были захвачены американцами. Во многом благодаря ним, в США был разработан самолёт с ракетными двигателями – Bell X-1, на котором в 1947 году Чак Йегер первым в мире превысил скорость звука.

Год спустя к аналогичному результату пришёл советский союз, разработав ЛА-176, который сначала сравнялся со скоростью звука на высоте в 9000 метров, а через месяц, получив усовершенствованные двигатели, превысил её на высоте в 7000 метров.

К сожалению, проект был закрыт из-за трагической гибели О.В. Соколовского, одного из пилотов этого самолёта. Далее продвижение в конструировании сверхзвуковых самолётов замедлилось из-за некоторых физических препятствий: сжижаемость воздуха на слишком высокой скорости, изменение аэродинамики и обтекаемости. Серьёзным препятствием стал перегрев самолётов, преодолевающих звуковой барьер. Такое явление называется «флаттер».

В течение нескольких дальнейших лет конструкторы работали над обтекаемостью, аэродинамикой, материалами корпуса и другими усовершенствованиями.

Военная авиация в 1950-е

В начале этого десятилетия конкурирующими во всех сферах США и СССР были разработаны F-100 Super Sabre и МиГ-19. Поначалу американский F-100 обгонял советский Миг, достигнув в 1953 году скорости в 1215 километров в час, однако год спустя советский МиГ смог его опередить, разогнавшись до 1450 километров в час.

Несмотря на отсутствие открытых военных столкновений США и СССР, в локальных конфликтах Вьетнамской и Корейской войны было установлено, что советский МиГ во многом превосходит своего американского конкурента.

МиГ-19 был легче, быстрее поднимался в воздух, превосходил конкурента в динамических характеристиках, а также радиус его боевого применения на 200 километров превышал показатель F-100.

Такие обстоятельства привели к повышенному интересу к советским разработкам со стороны американцев, и после окончания корейской войны офицер Но Гым Соком угнал Миг-19 с советской авиабазы, предоставив его США, за что получил вознаграждение в виде 100000 долларов.

Гражданская сверхзвуковая авиация

Полученные в годы войн технические наработки дали толчок для бурного развития авиации в 60-х годах. Основные проблемы, вызываемые преодолением звукового барьера, были решены, и конструкторы смогли приступить к проектированию первых сверхзвуковых самолётов гражданского назначения.

Полёт первого сверхзвукового авиалайнера, предназначенного для перевозки пассажиров, был совершён в 1961 году. Этим самолётом был Douglas DC-8, пилотируемый без пассажиров, с размещённым на борту балластом, имитирующим их вес для испытания в условиях, максимально приближённых к реальным. В момент спуска с высоты 15877 была развита скорость в 1262 км/ч.

Также скорость звука была незапланированно преодолена боингом 747, когда самолёт, направляющийся из Тайпея в Лос-Анжелес, в результате неисправности и некомпетентности экипажа вошёл в неконтролируемое пике. Пикируя с высоты в 125000 метров до 2900 метров, самолёт превысил скорость звука, получив при этом повреждения хвостовой части и доставив серьёзные травы двум пассажирам. Случай произошёл в 1985 году.

Всего построили два самолёта, способных по-настоящему превышать скорость звука в регулярных полётах. Ими были советский Ту-144 и англо-французский Aérospatiale-BAC Concorde. Кроме этих самолётов, ни один другой пассажирский летательный аппарат не мог поддерживать крейсерскую сверхзвуковую скорость.

Ту-144 и Конкорд

Первым в истории сверхзвуковым пассажирским самолётом по праву считается Ту-144, потому что он был построен раньше конкорда. Эти лайнеры отличали не только превосходные технические характеристики, но и изящный внешний вид – многие считают их самыми красивыми самолётами за всю историю авиации.

К сожалению, Ту-144 стал не только первым сверхзвуковым пассажирским самолётом, поднявшимся в небо, но и первым разбившимся лайнером такого типа. В 1973 году во время крушения в Ле-Бурже погибло 14 человек, что послужило первым толчком к прекращению полётов на этой машине.

Второе крушение Ту-144 произошло в Московской области в 1978 году – на самолёте началось возгорание, из-за чего посадка для двух членов экипажа обернулась летальным исходом.

В ходе проверки установили, причиной возгорания стала недоработка топливной системы нового двигателя, на тот момент тестируемого, в остальном же самолёт проявил прекрасные характеристики, так как смог совершить посадку при возгорании. Несмотря на это, коммерческие рельсы на нём были прекращены.

Конкорд служил европейской авиации намного дольше – полёты на нём продолжались с 1976 по 2003 год. Однако в 2000 году этот лайнер также потерпел крушение. Взлетая в Шарль Де Голль, самолёт воспламенился и рухнул на землю, что привело к гибели 113 человек.

Конкорд за всю историю перелётов так и не начал окупаться, а после катастрофы поток пассажиров уменьшился настолько, что проект стал ещё более убыточным, и через три года рейсы на этом сверхзвуковом самолёте прекратились.

Технические характеристики Ту-144

Многим интересно, какова была скорость сверхзвукового самолёта? Рассмотрим технические характеристики самолёта, который долгое время был гордостью отечественной авиации:

  • Экипаж – 4 человека;
  • Вместимость – 150 человек;
  • Соотношение длины и высоты – 67/12,5 метра;
  • Максимальный вес – 180 тонн;
  • Тяга с форсажем – 17500 кг/с;
  • Крейсерская скорость -2200 км/ч;
  • Максимальная высота полёта – 18000 метров;
  • Дальность полёта – 6500 километров.